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Introduction
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Structural Health Monitoring (SHM), challenge for the 
future : increasing demand for safer and more resilient 
buildings.

A possible innovative solution : Surface Acoustic Wave 
(SAW) technology.

Main advantages compared to existing solutions for SHM : 
fully passive (no embedded electronics/power supply) and 
wireless. 

➔ This work : 1st assessment of wireless commercial SAW 
sensors implementation for SHM, specifically in concrete. Fig 1 : Collapse of the Morandi  

bridge in Genoa (2018).



Presentation’s outline
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I.Introduction to SAW sensors

II. Instrumenting a RC beam

III. Wireless temperature monitoring

IV. Low strain sensing

V. High strain sensing



The Surface Acoustic Waves (SAW) technology



v
f =0

1. Electric RF field applied on the IDT 1 produces a SAW (inverse piezoelectricity effect)

2. The Surface Acoustic Wave travels along substrate surface to the IDT 2

3. The piezoelectric effect produces an electric RF signal from the SAW 

IDT 1 IDT 2

Photolithography limit =0.3 µm l= 1.2 µm

Quartz: V = 3km/s,  f0=2.5 GHz 
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SAW temperature and strain sensing

Higher temperatures
Velocity change : Δ𝒗

TCF =
1

𝑓0

Δ𝑓

Δ𝑇

Temperature Coefficient of Frequency

Frequency/delay shift Δ𝑓
Thermal expansion : Δλ

Strain 𝛥𝜆/Δv Δ𝑓
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SAW wireless 1-port resonator  configuration

Resonator
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➢ Remote query

➢ Batteryless / fully passive

➢ Attractive for SHM
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Equation y = a + b*x

Plot Frequency

Weight No Weighting

Intercept 2,72813E9 ± 3683,85799

Slope -2631,58319 ± 28,0439

Residual Sum of Squares 3,0291E8

Pearson's r -0,9996

R-Square (COD) 0,99921

Adj. R-Square 0,99909



II-Instrumenting a RC beam
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➢ Reinforced concrete beam : 1.2 m long, 
with a 155 mm x 200 mm cross-section.

➢ Instrumented rebars on the lower part.
Fig 2 : Reinforced concrete beam sketch.

Fig 3 : Metallic reinforcements 

assembled (upside-down view).



II-Instrumenting a RC beam
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➢ Reinforced concrete beam : 1.2 m long, 
with a 155 mm x 200 mm cross-section.

➢ Instrumented rebars on the lower part.
Fig 2 : Reinforced concrete beam sketch.

Fig 4 : Final concrete beam.



II-Instrumenting a RC beam
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Fig 5 : (a) Instrumented beam before concrete casting (upside down view). 

(b) Instrumented rebar 1. Inset: SAW device glued on metal flat.

➢ SAW sensors from SAW Components Dresden.

➢On both rebars : 868 MHz 1 port SAW 
resonators as strain sensors, 1 wireless and 1 
wired.

➢ Strain sensors : bare chips glued to the rebars, 
with a cyanoacrylate adhesive.

➢A 2.45 GHz wireless SAW temperature sensor.

➢On both rebars, piezoresistive strain gauges as 
reference sensors.



II-Instrumenting a RC beam
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• At 868 MHz, reading of the 
SAW resonators with a VNA : 
acquisition of S11 then post-
processing to track the 
frequency of the minimum.

• At 2.45 GHz, commercial 
reader from SCD.

• Commercial reader for the 
strain gauges (reference 
sensors).

Fig 6 : Schematic diagram of the strain measurement setup.



III-Wireless temperature monitoring
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Fig 7 : Wireless temperature measurement with the 

commercial SAW sensor at 2.45 GHz (rebar 2).

➢During 21 days after casting.

➢Reader antenna 2.5 cm from the beam.

➢Coherent with expected behavior of
concrete during hardening (exothermic
reaction in early stage, then thermalization
of the structure).

➢Maximum reading distance around 1 m.



IV-Low strain sensing
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Fig 8 : Strain measurement setup for small loads (metal 

weights visible on the beam).

➢ Low strain cycle with manually placed
metal weights (up to 200 kg).

➢Wired measurement (rebar 2).

➢Good correlation of the two sensors.

➢ SAW sensor sensitivity around 0.6 
ppm/µε.



IV-Low strain sensing
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Fig 9 : Wired strain measurement during low strain cycle (rebar 2).

➢ Low strain cycle with manually placed
metal weights (up to 200 kg).

➢Wired measurement (rebar 2).

➢Good correlation of the two sensors.

➢ SAW sensor sensitivity around 0.6 
ppm/µε.



V-High strain sensing
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Fig 10 : Measurement setup for high strain cycles. Inset : 

interrogation antennas under the beam.

➢ Use of an hydraulic bending
machine to reach higher loads.

➢ Several automated high strain
cycles conducted.

➢ Wireless and wired
measurements presented.



V-High strain sensing
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Fig 11 : Wireless strain measurement (rebar 1) during an 

automated high strain cycle.

➢ Wireless measurement, 
7 cm under the beam. 

➢ Noisy signal of the SAW 
sensor, but matching the
strain gauge trend.



V-High strain sensing
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Fig 12 : Wired strain measurement (rebar 2) during an 

automated high strain cycle.

➢ Wired measurement.

➢ Again, good matching of the
trends of both sensors.

➢ Drift of the SAW signal at 
constant load, increasing at 
higher loads.

➢ Likely due to relaxation in the
glue layer under the chip.



Conclusion
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❖ Commercial SAW resonators (as bare chips) can be directly glued on rebars and serve as 
strain sensors inside concrete, in a wireless or wired configuration. Wireless temperature 
monitoring was successful. Results in [1]

❖Wireless readings can be improved using other types of antennas, better antenna tuning, 
commercial readers instead of VNA…

❖ SAW signal drifts as applied strain increases, due to relaxation/creep inside the adhesive 
layer. Possible solutions : better adhesive, glue-less bonding with NanoFoil [2] or direct 
integration of SAW sensors on metallic pieces [3].

[1] P. Jeltiri et al. “Wireless strain and temperature monitoring in reinforced concrete using Surface Acoustic Wave (SAW) sensors”, IEEE 
Sensors Letters 2023 https://doi.org/10.1109/LSENS.2023.3315219  
[2] P. Nicolay et al. “Glue-Less and Robust Assembly Method for SAW Strain Sensors,” IUS 2108,  doi: 10.1109/ULTSYM.2018.8580224.
[3] P. Mengue et al., “Direct integration of SAW resonators on industrial metal for structural health monitoring applications,” Smart Mater. 
Struct., Oct. 2021, doi: 10.1088/1361-665X/ac2ef4.

sami.hage-ali@univ-lorraine.fr ; P.Nicolay@fh-kaernten.at ; pierre.jelriti@univ-lorraine.fr   

https://doi.org/10.1109/LSENS.2023.3315219
mailto:sami.hage-ali@univ-lorraine.fr
mailto:P.Nicolay@fh-kaernten.at
mailto:pierre.jelriti@univ-lorraine.fr

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17

