

Artificial Intelligence in Prediction of Shear Beams Strength

Professor. Hala Hasan Higher Institute of Earthquake Studies & Research - University of Damascus, Syria

D. Hala Hasan

UNIVERSITÉ

15. September, 2023

DUC

Health and Retrofitting of Structure

CONTENTS

- Introduction.
- The Wide Dataset.
- Traditional Methods Calculating The Shear Strength of Beams.
- AI and ML Methods:
- 1. Tikhonov Regularization.
- 2. Elastic Net.
- 3. Stochastic Gradient Descent.
- 4. Multilayer Perceptron.
- 5. Ensemble Learning.
- 6. Stacking Regressors.
- 7. Voting Regressor.
- 8. Histogram-based Gradient Boosting Regression Tree.
- Results & Conclusion.
- References.

Artificial intelligence "AI" has big contributions to problem-solving in multiple fields.

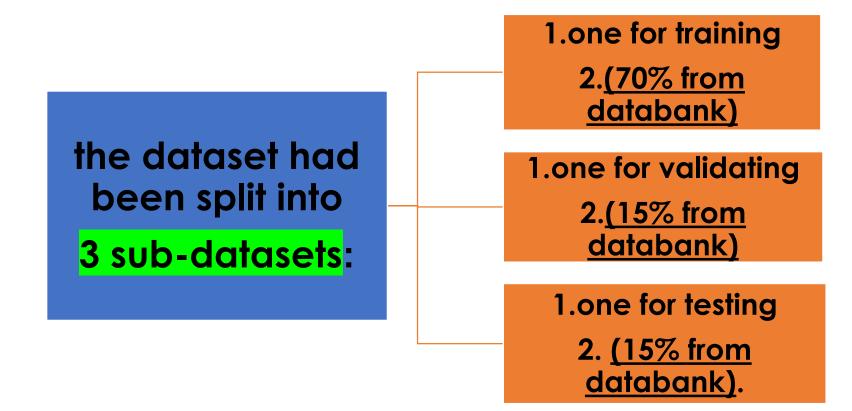
The shear strength of the beam is an important factor to have safe buildings. Calculating of those values is done usually using approximate methods [1].

Al methods proved to give reliable results in multiple fields when used with enough training data [2]. Multiple artificial intelligence and machine learning techniques have been used to predict the shear beam strength. Several regressors and neural networks have been used

A databank established by Reinbeck et al., (2003), for members without transverse reinforcement Evaluation Shear Database -ESDB-

Kuchma (2000) started a wide-ranging collection of test data on members both with and without transverse reinforcement

The shear strength of RC beams without shear reinforcement is of interest to this research in order to :


1- acquire a better understanding of the shear behavior of RC beams.

2- contribution of concrete to the shear strength of RC beams.

THE WIDE DATASET

We have used the collection shear databank (Evaluation Shear Database -ESDB-) from [3] to form our dataset.

The parameters taken into account : b, h, a/d, ps, fsy, ftk, As2, fsy2, Asw, sw, fyw, Vu

THE WIDE DATASET

- Table (1) gives the abbreviated ESDB with 439 test results from 67 researchers .
- It comprises 361 tests satisfying (a/d ≥ 2.9) and 78 members satisfying (2.40 < a/d < 2.9) on which the evaluations in this paper were based [3].

Table.1: part of abbreviated Evaluation Shear Database (ESDB) for the data set of shear test on RC-members without transverse reinforcement [3].

Reference Authors	Beam	(ատ)	d (mm)	fic	01 (%)	a/d	Vies (kN)	Reference	Beam	b	d,	fie (MPa)	0) (%)	a/d	Vicsi (kN)
Ahmad, Kahloo (1986)	Al	127	203		3.93	4.00		Kani (1967)	96	(mm) 156	775	24.0		3.95	
Ahmad, Kahloo (1986)	AZ	127	203		3.93			Kani (1967)	83	156	271		2.75		65.0
Ahmad, Kahloo (1986)	A8	127	208			3.00	48.9	Kani (1967)	97	152		25.9		2.95	62.5
Ahmad, Kahloo (1986)	Bl	127	202		5.05			Kani (1967)	3043	154	1092				166.0
Ahmad, Kahloo (1986)	B2	127	202		5.05			Kani (1967)	56	153			2.65		28.0
Ahmad, Kahloo (1986)	B7	127	208			4.00	46.3	Kani (1967)	58	152		25.9			28.9
Ahmad, Kahloo (1986)	B8	127	208		2.25			Kani (1967)	60	155	139			2.93	
Ahmad, Kahloo (1986)	CI	127	184		6.62			Kani (1967)	91	154	269		2,70		51.0
Ahmad, Kahloo (1986)	C2	127	184			3.00	75.6	Kmi(1967)	92	152			2.73		45.9
Ahmad, Kahloo (1986)	C7	127	207			4.00		Krefeld, Thurston (1956)	11A2	152			3.42		73.4
Ahmad, Kahloo (1986)	C8	127						Krefeld, Thurston (1966)	12A2	152			4.51		64.1
Aster; Koch (1974)	2	1000	250	25.7	0.64	3.68	216.3	Krefeld, Thurston (1966)	18A2	152			2.64		63.2
Aster, Koch (1974)	3	1000	250					Krefeld, Thurston (1966)	18B2	152		18.9		2.89	72.1
Aster, Koch (1974)	8	1000	500	29.5	0.63	5.50	280.6	Krefeld, Thurston (1966)	18C2	152		21.5			73.4
Aster; Koch (1974)	9	1000	500	18.9	0.63	5.50	254.1	Krefeld, Thurston (1966)	18D2	152	316		2.64		60.1
Aster, Koch (1974)	10	1000	500	19.0	0.63	5.50	255.1	Krefeld, Thurston (1966)	16A2	152				3.81	41.8
Aster: Koch (1974)	11	1000	500	23.3	0.46	3.65	261.0	Krefeld, Thurston (1966)	17A2	152		20.9			44.1
Aster, Koch (1974)	12	1000	500	26.0	0.65	3.65	323.7	Krefeld, Thurston (1966)	3AC	152			2.03		44.1
Aster, Koch (1974)	16	1000	750	28.8	0.42	3.67	392.4	Krefeld, Thurston (1966)	3CC	152			2.03		35.6
Aster: Koch (1974)	17	1000	750	27.3	0,42	3.67	349.2	Krefeld, Thurston (1966)	3AAC	152			2.03		55.6
Bhal (1968)	B1	240	300	22.5	1.26	3.00	71.5	Krefeld, Thurston (1966)	4AAC	152	254	27.7	2.65	3.60	57.9
Bhal (1968)	B2	240	600	28.8	1.26	3.00	119.5	Krefeld, Thurston (1966)	5AAC	152		31.2	3.31	3.62	57.0
Bhal (1968)	B3	240	900	26.7	1.26	3.00	165.0	Krefeld, Thurston (1966)	6AAC	152	250	32.7	4.35	3.65	60.1
Bhal (1968)	B4	240	1200					Krefeld, Thurston (1966)	3AC	152	256		2.03		53.4
Bhal (1968)	B5	240	600	25.8	0.63	3.00	106.0	Krefeld, Thurston (1966)	4AC	152			2.66	4.80	53.8
Bhal (1968)	B6	240	600	24.0	0.63	3.00	114.0	Krefeld, Thurston (1966)	SAC	152				4.83	54.3
Bhal (1968)	B7	240	900	26.5	0.63	3.00	137.5	Krefeld, Thurston (1966)	6AC	152			4.35		59.2
Bhal (1968)	B8	240	900	26.9	0.63	3.00	125,0	Krefeld, Thurston (1966)	4CC	152			2.66		52.5
Bresler, Scordelis (1963)	0A-1	310	461	21.4	1.81	3.97	166.9	Krefeld, Thurston (1966)	SCC	152			3.31		57.4
Bresler, Scordelis (1963)	0A-2	305	466	23.3	2.27	4.91	178.0	Krefeld, Thurston (1966)	6CC	152			4.35		63.2
Bresler, Scordelis (1963)	0A-3	307		35.9	2.73	6.93	189.1	Krefeld, Thurston (1966)	С	203	483		1.57		84.6
Chana (1981)	2.1	203	356	37.0	1.74	3.00	96.0	Krefeld, Thurston (1966)	OCA	152		33.9		6.00	48.5
Chana (1981)	2.2	203	356	31.2	1.74	3.00	87.4	Krefeld, Thurston (1966)	OCB	152			2.66		52.5
Chana (1981)	2.3	203					99.4	Krefeld, Thurston (1966)	OCA	254	456	36.4			
Cossio, Siess (1950)	L-2A	132	252			3.02		Krefeld, Thurston (1966)	OCB	254		.36.4			
Cossio, Siess (1960)	ы	152	252					Collins, Kuchma (1997)	B100		925	34.2			
Cossio, Siess (1960)	L-4	152	252	24.5	3.35	5.02	51.2	Collins, Kuchma (1997)	B100H	300		93.1			
Cossio, Siess (1960)	L-5	152	252	26,5	3.35	6.03	51.0	Collins, Kuchma (1997)	B100B	300	925	37.1	1.01	2.92	204.0

Cossio, Siess (1960)	A2	152	254	29.9	0.98	3.00	41.8	Collins, Kuchma (1997)	BIOOL	300	925	37.1	1.01	2.92 2	23.8
Cossio, Siess (1960)	A3	152	254	18.5	0.98	4.00	34.3	Podgorniak-Stanik (1998)	BRLIDO	300	925			2.92 1	
Cossio, Siess (1960)	A-12	152	254	25.4	3.33			Podgorniak-Stanik (1998)	BN100	300	925	35.2	0.76	2.92	92 1
Cossio, Siess (1960)	A-13	152		21.0				Podgorniak-Stanik (1998)	BH100	300	925			2.92 1	
Cossio, Siess (1960)	A-14	152	254	26.1	3.33	5.00	\$4.7	Podgorniak-Stanik (1998)	BNSO	300	450			3.00	
Elzanaty, Nilson, Slate (1986)	FI	178	272				58.6	Podgorniak-Stanik (1998)	BH50	300	450	94.1	0.81	3.00 1	31.9
Elzanaty, Nilson, Slate (1986)	F2	178	270	75.3	2.50			Podeorniak-Stanik (1998)	BN25	300				3.00	
Eizanaty, Nilson, Slate (1986)	F10	178	268		3.30		78.0	Podgorniak-Stanik (1998)	BN12	300	110	35.2	0.91		40.I
Elzanaty, Nilson, Slate (1986)	F9	178	268	75.3	1.60	4.00	64.0	Laupa, Siess (1953)	\$2	152	269			4.54	
Elzanaty, Nilson, Slate (1986)	F15	178	268	60.3	2.50	4.00	68.0	Laupa, Siess (1953)	S3	152		30.7			53.1
Elzanaty, Nilson, Slate (1986)	F6	178	267	62.2	2.50	6.00 4	62.0	Laupa, Siess (1953)	S4 .	152	263	29.3	3.21		55.6
Elzanaty, Nilson, Slate (1986)	F11	178	272	19.7	1.20	4.00 4	45.5	Laupa, Siess (1953)	S5	152	262		4.11		49.8
Elzanaty, Nilson, Slate (1986)	F12	178	269	19.7	2.50	4.00	54.6	Laupa, Siess (1953)	\$11	152	267	14.0	1.90	4.56	33.8
Elzanaty, Nilson, Slate (1986)	F8	178	273	38.0	1.00	4.00 4	46.7	Laupa, Siess (1953)	\$13	152	262			4.56	49.8
Elzanaty, Nilson, Slate (1986)	F13	178	272	38.0	1.20	4.00	47.0	Leonhardt, Walther (1962)	P8	502	148	24.2	0.91		92.8
Elzanaty, Nilson, Slate (1986)	E14	178	269	38.0	2.50	4.00	64.6	Leonhardt, Walther (1962)	P9	500		24.2	1.86	3.36 1	07.8
Feldman, Siess (1955)	L-2A	152	252	34.9	3.35	3.02	80.1	Leonhardt, Walther (1962)	51	190	270	28.0			60.3
Feldman, Siess (1955)	L-3	152	252	26.6	3.35	4.02	53.4	Leonhardt, Walther (1962)	ST	190	270	28.0	2.07	3.00	76.5
Feldman, Siess (1955)	L-4	152	252	24.5	3.35	5.03	51.2	Leonhardt, Walther (1962)	61	190	270	28.0	2.07	4.07	60.8
Feldman, Siess (1955)	L-S	.152	252	26.5	3.35	6.04	51.2	Leonhardt, Walther (1962)	6r	190	270		2.07		68.2
Grimm (1997)	\$].]	300	153	85.6	1.34	3.73	70, 1 ·	Leonhardt, Walther (1962)	7-1	190	270		2.07	5.00	62.3
Grimm (1997)	s1.2	300	152	86.6	2.21	3.75	75.8	Leonhardt, Waither (1962)	7-2	190	270	29.4	2.07	5.00	68.2
Grimm (1997)	sl.3	300						Leonhardt, Walther (1962)	B-1	190	270	29.4	2.07	6.00	65.7
Grimm (1997)	s2.2	300	348	86.7	1.88	3.53	87.1	Leonhardt, Walther (1962)	B-2	190	270	29.4	2.07	6.00	65.7
Grimm (1997)	s2.3	300	348	89.0	0.94	3.53 1	23.1	Leonhardi, Walther (1962)	D2/1	100	140		1.62		21.2
Grimm (1997)	s2.4	300	328	89.4	3.76	3.75 2	29.8	Leonhardt, Walther (1962)	D2/2	100	140	35.4			23.3
Grimm (1997)	s3.2	300	718	89.0	1.72	3.66 2	59.1	Leonhardt, Walther (1962)	D3/1	150	210	36.6	1.62		46.4
Grimm (1997)	s3.3	300	746	89.7	0.83	3.53 1	92.8	Leonhardt, Walther (1962)	D3/21	150	210	36.6			41.2
Grimm (1997)	s3.4	300	69 0	89.4	3.57	3.81 3	79.0	Leonhardt, Walther (1962)	D3/2r	150	210	36.6			44.5
Hallgren (1994)	B90SB13-2-86		192	81.9	2.17	3.65	82.5	Leonhardt, Walther (1962)	D4/1	200	280	33.6			74.1
Hallgren (1994)	B90SB14-2-86			81.9			76.5	Leonhardt, Walther (1962)	D4/2	200	280				74.1
Hallgren (1994)	B90SB22-2-85		193	80.4	2.22	3.63	75.5	Leonhardt, Walther (1962)	D4/2r	200	280	33.6			68.7
Hallgren (1994)	B91SC2-2-62	155	195	58.7	2.23		69 <i>.</i> 5	Leonhardt, Walther (1962)	C1	100	150	37.2	1.34	3.00	21.6
Hallgran (1994)	B91SC4-2-69			65.6				Leonhardt, Walther (1962)	C2	150	300				64.8
Hollgren (1994)	B90SB17-2-45		191		2.26			Leonhardt, Walther (1962)	C3	200	450			3.00	99.1
Hallgren (1994)	B90SB18-2-45		194		2.25		63.0	Leonhardi, Walther (1962)	C4	225	600			3.00.1	
Hallgren (1994)	B90SB21-2-85		194		2.25			Marti, Pralong, Th? Imana (1977)	PSI					4.44	
Hallgren (1994)	B91SC1-2-62			58.7				Mathey, Watstein (1963)]ila- 17	203				3.78	
Hallgren (1994)	B91SD1-4-61			57.8				Mothey, Watstein (1963)	1fla-18	203	403	23.9			82.5
Hallgren (1994) Hallgren (1994)	B91SD2-4-61			57.8				Mathey, Watstein (1963)	Va-19	203	403	22.3			64.7
	B91SD3-4-66		195		3.96		51.5	Mathey, Watstein (1963)	Va-20	203	403				67.4
Hallgren (1994)	B91SD4-4-66		195		3.99			Mathey, Watstein (1963)	Via-24	203	403			3.78	
Hallgren (1994) Hallgren (1994)	B91SD5-4-58			55.4			/8.9	Mathey, Watstein (1963)	Yla-25	203	403			3.78	
man Ren (1994)	B91306-4-38	130	190	55.4	4.10	3.37	52,5	Morrow, Viest (1957)	B56 B2	305	368	14.0	1.89	3.86	02.2

THE WIDE DATASET

 Table (2) is a revised and more extended version with 398 tests for considering the size effect of members without transverse reinforcement [3].

Table.2: part of Slightly modified Evaluation Shear Database (ESDB) for the data set of shear test on RC-members without transverse reinforcement [3].

		Geometrie									Concrete														Lond							
1	Autor	Vers.Nr.	shape		6		~ I	1	. 1	í a		a∕d	0	. 1	control	1 f.	. 1	5	. 1	control	- from	_	f		Asl	1	D.	Pr-	6		v	Ve
1				b in	Ь	bw in	bw	h in	ь	d in	а	kao	dies in	dias	specimen	fic psi	n.	foc psi	fic	specimen	fl catest_psi	fictest	ficuncal o	si ficum, cal	Asl in	1 44	rhal	rhotw	fiy ksi	l fry	vet kins	vet
Nr.	Autor	Vers.Nr.	R/T/1	in	mm	in	mm	in	mm	in	mm		. in	mm		psi	MPa	psi	MPa		psi	MPa	psi	MPa	in*	mm ²	96	%	ksi	MPa	kips	kN
	Adeber, Collins (1996)	ST1	R	14,17	360	14,17	360	12,20	310	10,94	278	2,88	0,75	19.0	cyl	7232	49,9	7612.5	52,5	sp	561	3,870	582	4,016	2,43	1570	1.57	1,57	77,7	536	28,67	127,526
2	Adebar, Collins (1996)	ST2	R	14,17	360	14,17	360	12,20	310	10,94	278	2,88	0,75	19,0	cyl	7232	49,9	7612.5	52,5	ap.	561	3,870	582	4,016	2,43	1570	1.57	1.57	77,7	536	26,68	118,670
3	Adebar, Collins (1996)	573	R	11.42	290	11,42	290	12,20	310	10,94	278	2,88	0,75	19.0	cyl	6791	46,8	7148.5	49.3	sp	587	4,050	556	3,838	2,43	1570	1,95	1.95	77.7	136	24.21	107,723
4	Adebar, Collins (1996)	ST8	R	11.42	290	11,42	290	12,20	310	10,94	278	2,88	0,75	19,0	cyl	6364	43,9	6699.0	46.2	SD.	561	3,870	531	3,661	2,43	1570	1,95	1.95	77.7	536	18,12	80,614
5	Adubar, Collins (1996)	ST16	R	11.42	290	11,42	290	8,27	210	7,01	178	4,49	0.75	19.0	cyl	7094	48,9	7467.5	51.5	sp	483	3,330	574	3,961	2,43	1570	3,04	3,04	77.7	536	16,89	75,110
6	Adebar, Collins (1996)	ST23	R	11,42	290	11,42	290	12,20	310	10,94	278	2,88	0,75	19,0	cyl	8113	56,0	8540,5	58,9	NP.	731	5,040	614	4,238	1,240	800	0,99	0,99	77.7	536	20,21	89,883
7	Ahmad, Kahleo (1986)	AI	R	5.00	127	5,00	127	10.00	254	8,00	203	4.00	0.50	12,7	693	8595	59.3	9047.2	62,4				627	4,326	1,57	1013	3,93	3,93	60.0	414	13,00	57,824
8	Ahmad, Kahloo (1986)	A2	R	5,00	127	5,00	127	10,00	254	8,00	203	3,00	0.50	12,7	693	8595	59.3	9047.2	62,4				627	4,326	1,57	1013	3.93	3,93	50,0	414	15,50	68,944
9	Ahmad, Kahloo (1986)	AJ	R	5,00	127	5,00	127	10,00	254	8,00	203	2,70	0,50	12,7	cy3	8595	59.3	9047.2	62,4				627	4,326	1,57	1013	3.93	3,93	60.0	414	15.50	6X,944
10	Ahmad, Kahloo (1986)	AS	R	5,00	127	5,00	127	10,00	254	8,19	208	3,00	0.50	12,7	03	8595	59,3	9047,2	62,4				627	4,326	0,72	467	1.77	1,77	60,8	414	11,00	48,923
	Ahmad, Kahloo (1986)	BI	R	5,00	127	5,00	127	10,00	254	7,94	202	4,00	0,50	12,7	693	9464	65,3	9962,3	68,7				649	4,476	2.00	1289	5.03	5.03	60,0	414	11.51	51,210
	Ahmad, Kahloo (1986)	B2	R	5.00	127	5,00	127	10,00	254	7,94	202	3,00	0,50	12.7	93	9464	65,3	9962.3	68,7				649	4,476	2.00	1289	5,03	5,03	60,0	414	15,50	68,944
	Ahmad, Kahioo (1986)	B3	R	5.00	127	5,00	127	10,00	254	7,94	202	2,70	0,50	12.7	cy3	9464	65,3	9962.3	68.7				649	4,476	2.00	1289	5.03	5,03	50.0	414	22,50	100,080
14	Ahmad, Kahloo (1986)	B7	R	5,00	127	5,00	127	10,00	254	8.19	208	4,00	0,50	12,7	cy3	9464	65.3	9962,3	68.7				649	4,476	0.92	594	2,25	2,25	60.0	414	10,00	44,480
	Ahmad, Kahino (1986)	Bš	R	5,00	127	5,00	127	10,00	254	8,19	208	3,00	0,50	12.7	693	9464	65.3	9962.3	68.7				649	4,476	0.92	594	2,25	2,25	60.0	414	10,50	46,704
16	Ahmad, Kahleo (1986)	B9	R	5,00	127	5,00	127	10,00	254	8,19	208	2.70	0.50	12.7	cy3	9464	65.3	9962.3	68.7				649	4,476	0.92	594	2,25	2,25	00.0	414	18,00	80,064
17	Ahmad, Kahleo (1986)	CI	R	5.00	127	5,00	127	10,00	254	7.25	184	4,00	0.50	12.7	cy3	9068	62.7	9566.4	66.0				640	4,412	2,41	1552	6,64	6,64	60.0	414	12,20	54,266
18	Ahmad, Kahleo (1986)	C2	R	5,00	127	5,06	127	10,00	254	7,25	184	3,00	0.50	12,7	cy3	9088	62.7	9566.0	66.0				640	4.412	2,41	1552	6.64	6,64	50,0	414	17.00	75,616
19	Ahmad, Kahloo (1986)	C3	R	5,00	127	5,00	127	14,00	254	7.25	184	2,70	0.50	12,7	693	9088	62.7	9566.0	66.0				640	4,412	2,41	1552	6,64	6,64	60.0	414	15,50	68,944
20	Ahmad, Kahiso (1986)	C7	R	5,00	127	5.00	127	10.00	254	8,13	207	4,00	0.50	12.7	693	9088	62.7	9566.0	66.0				540	4,412	1.33	855	3.26	3,26	50.0	414	10,20	45,370
21	Ahmad, Kahloo (1986)	C8	R	5,00	127	5,00	127	10,00	254	8.13	207	3,00	0,50	12,7	93	9058	62.7	9566.0	66.0				640	4.412	1.33	855	3.26	3,26	60.0	414	10,00	44,480
22	Ahmad, Kahlee (1986)	C9	R	5,00	127	5,00	127	F0,00	254	8,13	207	2,70	0,50	12,7	cy3	9088	62,7	9566,0	66,0				640	4,412	1,33	855	3,26	3,26	60,0	414	10,20	45,370
23	Al-Alusi (1957)	7	т	13,00	330	3,00	76	5,75	146	5,00	127	4,50	0,25	6,4	cyl	3506	24,2	3690,0	25,4	1	314	2,166	338	2,331	0,39	253	0,60	2,62	53.0	366	3.05	13,550
24	Al-Alusi (1957)	10	т	13,00	330	3,00	76	5,75	146	5,00	127	4,00	0.25	6,4	cyl	3943	27.2	4150,0	28,6		333	2,298	371	2,556	0,39	253	0,60	2,62	53.0	366	3.31	14,718
25	Al-Alusi (1957)	ш	т	13,00	330	3,00	76	5,75	146	5,00	127	3,40	0,25	6,4	cyl	3943	27,2	4150,0	28,6	.6	363	2,504	371	2,556	0,39	253	0,60	2,62	53,0	366	3.91	17,405
26	Al-Alusi (1957)	18	т	13,00	330	3,00	76	5,75	146	5,00	127	4,50	0,25	6,4	eyl	3705	25,6	3900,0	26,9	9	344	2,371	353	2,435	0,39	253	0,60	2,62	53,0	366	3,15	14,018
27	Angelakos, Bentz, Collins (2001)	DB120	R	11,81	300	11,81	300	39,37	1000	36,42	925	2,92	0,39	10,0	cyl	2893	20,0	3045,0	21,0				290	1,997	4,34	2800	1,01	1,01	79,8	550	40,24	179,000
28	Angelakos, Bentz, Collins (2001)	DB130	R	11,81	300	11,81	300	39,37	1000	36,42	925	2,92	0,39	10,0	cyl	4408	30,4	46-40,0	32,0				404	2,785	4,34	2800	1,01	1,01	79,8	550	41,59	185,000
29	Angelakos, Bentz, Collins (2001)	DB140	R	11,81	300	11,81	300	39.37	1000	36,42	925	2,92	0,39	10,0	cyl	5235	36,1	5510,0	38,0				460	3,170	4.34	2800	1,01	1,01	79.8	550	40,47	180,000
30	Angelakos, Bentz, Collins (2001)	DB165	R	11,81	300	11.81	300	39.37	1000	36.42	925	2,92	0.39	10,0	cyl	8954	61,8	9425.0	65,0				636	4,389	4,34	2800	1.01	1.01	79.8	550	41.59	185,000
	Angelakos, Bentz, Collins (2001)	DB180		11.81	300	11.81	300	39.37	1000	36.42	925	2,92	0.39	10.0	cyl	11020	76.0	11600.0	\$0.0				685	4,723	4,34	2800	1.01	1,01	79,8	550	38,67	172,000
	Angelakos, Bentz, Collins (2001)	DB230	R	11,81	300	11.81	300	39,37	1000	35.24		3,02	0.39	10,0	cyl	4408	30.4	4540.0	32.0				404	2,785	8,68	5600	2.09	2.09	79.X	550	57,78	257,000
	Angelakos, Bentz, Collins (2001)	DBO530		11,81	300	11,81	300	39,37	1000	36,42		2,92	0.39	10,0	cyl	4408	30,4	4640,0	32,0				404	2,785	2,17	1400	0,50	0,50	79.8	550	37,10	165,000
_	Aster: Koch (1974)	2	R	39,37	1000	39,37	1000	11.06	281	9.84	_	3,68	1.18	30,0	cu2	3708	25.6	3902.9	26.9	A	350	2,413	353	2,437	2,48	1600	0.64	0,64	80.3	554	48.63	216,310
	Aster: Koch (1974)	1	î	39,37	1000	39.37	1000	11.36	289	9,84	250	3.68	1.18	30,0	cu2	3764	26.0	3961,9	27,3	n	393	2,708	357	2,465	3.53	2280	0,91	0.91	77.6	535	49,62	220,730
	Aster: Koch (1974)	8	R.	39.37	1000	39.37	1000	21,42	544	19,69		5,50	1.18	30,0	pri	4282	29.5	4506.9	31,1	a	427	2,943	395	2,724	4,87	3140	0.63	0.63	77.7	536	63.08	280,570
	Aster, Koch (1974)		i i	39.37	1000	39,37	1000	21,42	544	19.69	500	5.50	1.18	30.0	pri	2745	18.9	2889.8	19.9	4	248	1,707	277	1,912	4,87	3140	0,63	0,63	77.7	536	57,12	254,080
	Astor: Koch (1974)	10		39,37	1000	39.37	1000	21,42	544	19,69		5,50	1,18	30.0	pri	2760	19.0	2904.8	20,0	a	239	1,648	278	1,920	4,87	3140	0,63	0,63	17.7	536	57.34	255,060
	Aster: Koch (1974)	11	R	39.37	1000	39.37	1000	21,20	539	19.69	500	3,65	1,18	30,0	pri	3385	23.3	3563.6	24.6	1	307	2,119	329	2,268	3.53	2280	0,46	0,46	77.6	535	58,67	260,950
	Aster; Koch (1974)	12	Ř	39.37	1000	39.37	1000	21,26	540	19.69	100	3.65	1,18	30.0	cu2	3764	26,0	3961.9	27.3		393	2,708	357	2,465	5,05	3260	0,65	0,65	77,6	53.5	72,78	323,730
	Aster; Koch (1974)	16	R	39.37	1000	39.37	1000	31.26	794	29,53	750	3.67	1.18	10,0	pcl	4182	28.8	4402.1	30.4		350	2,413	388	2.675	4.87	3140	0,42	0.42	77,7	536	88.22	392,400
	Aster; Koch (1974)	17	L î	39,37	1000	39.37	1000	31,26	794	29,53		3,67	1,18	30,0	pel		27,3	4162.5	28,7		358	2,413	371	2,562	4,87		0,42	0,42	77.7	536	78,52	349,240
				31.21	1000	27.01		2010		2.000	1.00	2101	1,10	2010	14.1	3934	24,2	410613	44,1	-	920	÷;*1÷	275	44.796	4,07	3149	9.94	2142		330	10,24	247,240

 To make comparisons between different tests and code equations table (3), it was necessary to convert strength values determined on different control specimens to standardized and unique strength values. Table.3: Conversion factors of concrete compressive strengths of different specimens.

Specimen strength	Relational equation	Specimen type and size, mm
f _{c,cyl}	f _{1c,cyl} = 0.95 f _{c,cyl}	Cylinder ø150 X H300
f _{c,cube}	f _{1c,cube} = 0.75 f _{c,cube}	Cube 150 X 150
f_{c,cyl,100/300}	f _{c,cyl} = 1.05 f _{c,cyl,100/300}	Cylinder ø100 X H300
f_{c,cyl,70/150}	f _{c,cyl} = (1.0/1.06) f _{c,cyl,70/150}	Cylinder ø70 X H150
f _{c,cyl,120/360}	f _{c,cyl} = (1.0/0.95) f _{c,cyl,120/360}	Cylinder ø120 X H360
f _{c,cyl,100/200}	f _{c,cyl} = (0.92/0.95) f _{c,cyl,100/200}	Cylinder ø100 X H200
f _{c,cube200}	f _{c,cube} = 1.05 f _{c,cube200}	Cube 200 X 200
f _{c,cube100}	f _{c,cube} = 0.90 f _{c,cube100}	Cube 100 X 100

A dozen Al and ML techniques:

to find the best solution from multiple aspects like <u>accuracy</u>, and <u>speed</u>, and <u>the number of outliers</u>.

A.Tikhonov Regularization.

A.Elastic Net.

A.Stochastic Gradient Descent.

A.Multilayer Perceptron.

A.Ensemble Learning.

A.Stacking Regressors.

A.Voting Regressor.

A.Histogram-based Gradient Boosting Regression Tree. The Tikhonov regularization method is a powerful alternative for regularization of nonlinear system identification problems

We got a validation result of 66% which is not good enough

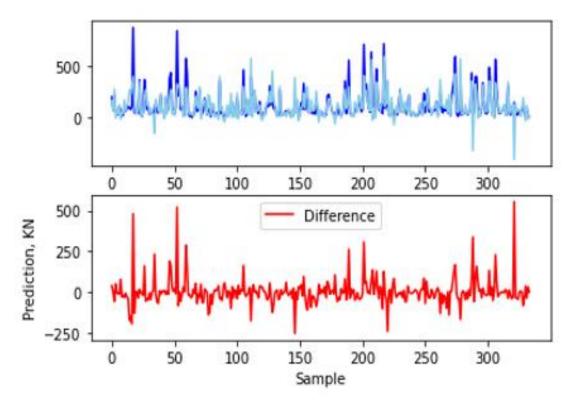
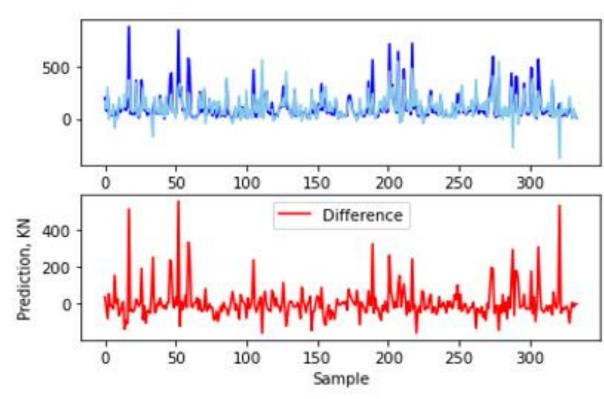
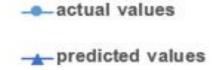


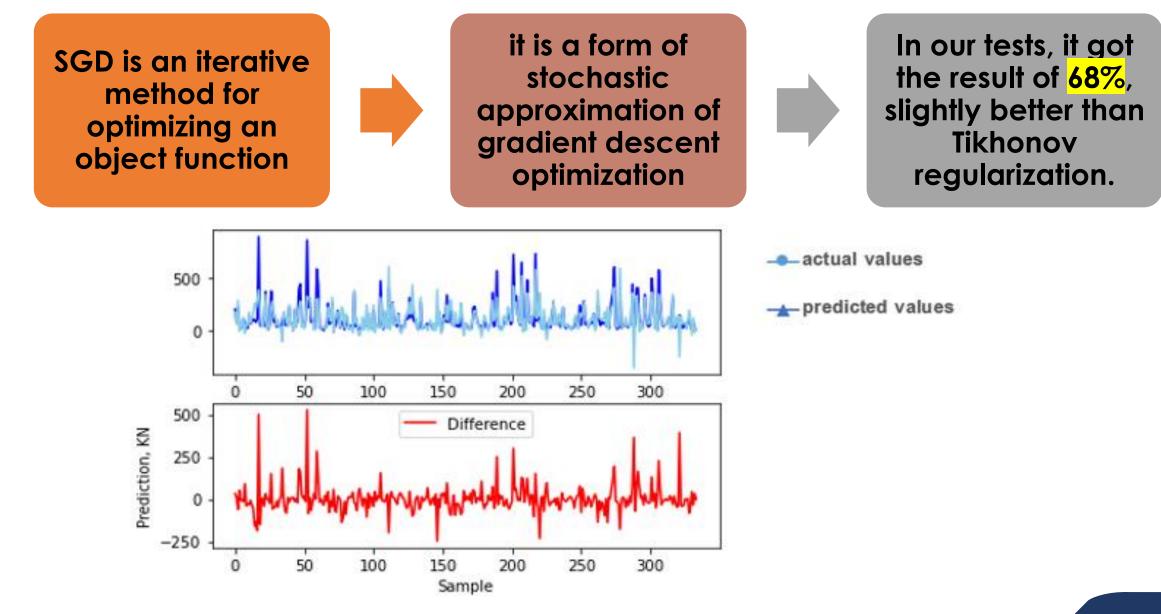
Fig 1. Ridge regression results.


actual values

B. ELASTIC NET

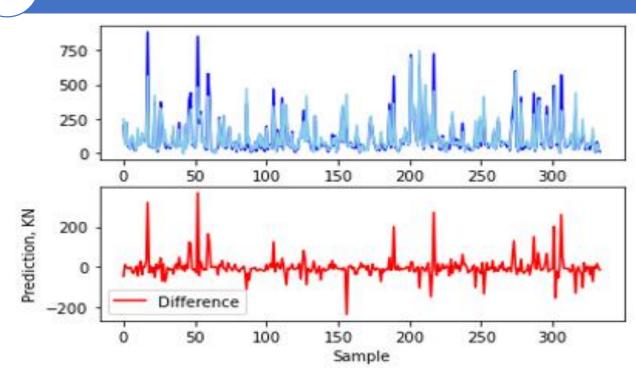

Elastic Net combines:

Tikhonov regularization With LASSO regression


Our model was able to get worse results at 63%.

Fig, 2. The elastic net regression result.

C. STOCHASTIC GRADIENT DESCENT

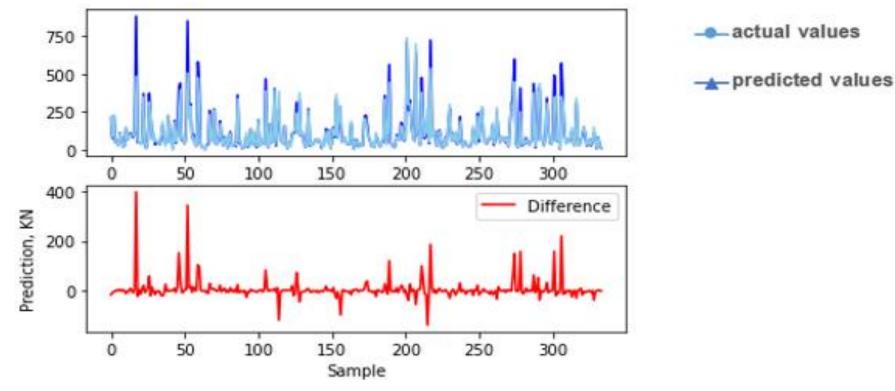

Fig, 3. SGD regression result

D. MULTILAYER PERCEPTRON

MLP for short proved to be very good in understanding the relationship between the input and output

The MLP consists of three or more layers (an input and an output layer with one or more hidden layers).

After building our regressor based on MLP we had a result of 89%.

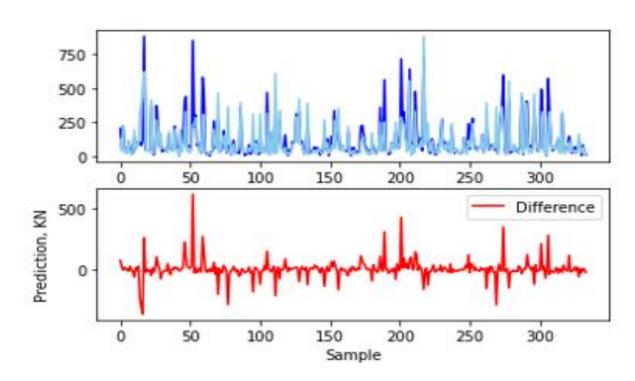

actual values

------ predicted values

Fig, 4. MLP regression result

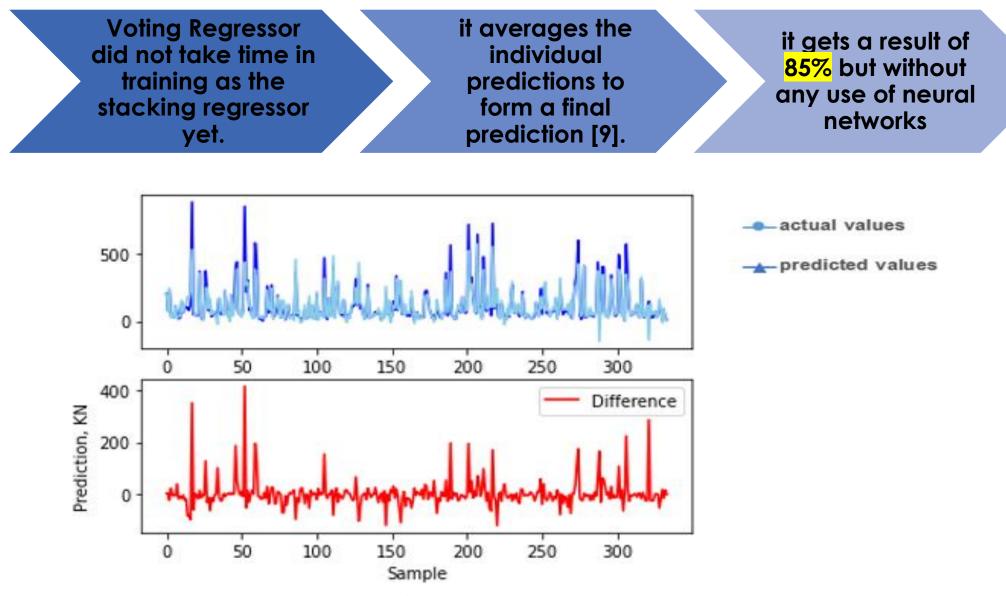
E. ENSEMBLE LEARNING

- An ensemble is itself a supervised learning algorithm because it can be trained and then used to make predictions.
- Empirically, ensembles tend to yield better results when there is significant diversity among the models.
- a result of this method 90% is obtained which is <u>better than MLP by 1%</u>.


Fig, 5. Randomized decision trees results.

F. STACKING REGRESSORS

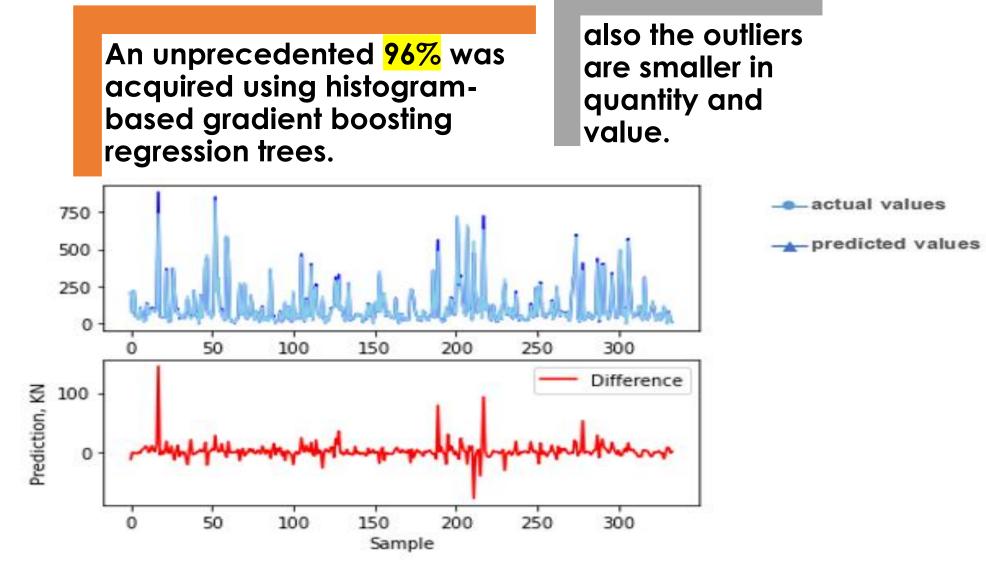
D. Hala Hasan


Stacking allows to use of the strength of each estimator by using their output as the input of a final estimator [8].

after testing we found that the extra complication yielded a result of 69%.

Fig, 6. Result of stacking multiple regressors.

G. VOTING REGRESSOR

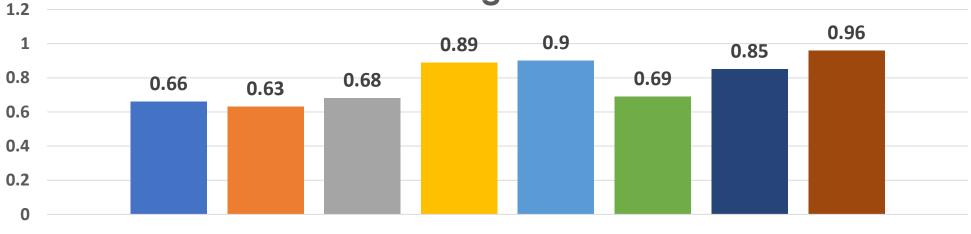

Fig, 7. Result of a voting regressor.

H. HISTOGRAM-BASED GRADIENT BOOSTING REGRESSION TREE

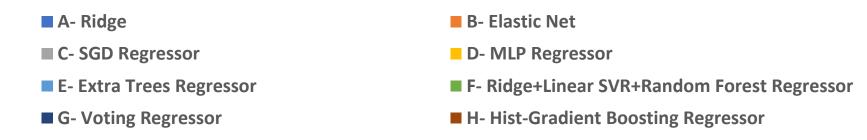
Gradient boosting is one of the most powerful techniques for building predictive models

Hypothesis boosting was the idea of filtering observations, focusing on developing new weak learns Gradient boosting is typically used with decision trees (especially CART trees) of a fixed size as base learners

H. HISTOGRAM-BASED GRADIENT BOOSTING REGRESSION TREE


Fig, 8. Result of Histogram-Based Gradient Boosting Regression Tree.

RESULTS


 Table (4) shows <u>training</u>, <u>test</u>, and <u>validation results</u> for multiple machine learning and artificial intelligence methods.

	Algorithm	Training Accuracy	Test Accuracy	Validation Accuracy
	A- Ridge	0.73	0.63	0.66
	B- Elastic Net	0.68	0.58	0.63
Table .4:	C- SGD Regressor	0.73	0.64	0.68
Multiple	D- MLP Regressor	0.90	0.85	0.89
algorithms scores.	E- Extra Trees Regressor	0.99	0.90	0.90
	F- Ridge+Linear SVR+Random Forest Regressor	0.76	0.65	0.69
	G- Voting Regressor	0.91	0.83	0.85
_	H- Hist-Gradient Boosting Regressor	0.97	0.98	<mark>0.96</mark>

Artificial Intelligence METHODS

regression factor for Validation Accuracy

Fig, 9. Result of regression factor for Validation Accuracy of AI Methods

• The histogram-based gradient boosting regression gave the <u>best</u> results with the smallest number of outliers, and the highest accuracy compared to other artificial intelligence and machine learning methods.

CONCLUSION

- 1. A total of 8 techniques has been evaluated for solving the problem of beam strength prediction, The techniques were applied on data collection shear databank (**ESDB database**).
- 2. Root mean squared error was used to evaluate the predicted values.
- 3. the comparison metric was the validation accuracy, which uses unseen data for evaluation.
- 4. Histogram Gradient boosting regressor a machine learning technique has outperformed the best in class predictor namely the MLP neural network.
- 5. It is an indicator that the nature of this problem could be solved with far simpler architectures than neural networks.
- 6. Developing new models and experimenting with different setups and configurations has been conducted to explore the usage of AI in the field of beam strength prediction.

- [1] S. G. Hong and T. Ha, "Effective capacity of diagonal strut for shear strength of reinforced concrete beams without shear reinforcement," ACI Struct. J., vol. 109, no. 2, 2012, doi: 10.14359/51683625.
- [2] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, "Explainable Machine Learning for Scientific Insights and Discoveries," IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2976199.
- [3] K. H. Reineck, D. A. Kuchma, K. S. Kim, and S. Marx, "Shear database for reinforced concrete members without shear reinforcement," ACI Struct. J., vol. 100, no. 2, 2003, doi: 10.14359/12488.
- [4] T. A. Johansen, "On Tikhonov regularization, bias and variance in nonlinear system identification," Automatica, vol. 33, no. 3, 1997, doi: 10.1016/S0005-1098(96)00168-9.
- [5] H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 67, no. 2, 2005, doi: 10.1111/j.1467-9868.2005.00503.x.

REFERENCES

- [6] S. ichi Amari, "Backpropagation and stochastic gradient descent method," Neurocomputing, vol. 5, no. 4–5, 1993, doi: 10.1016/0925-2312(93)90006-O.
- [7] D. Opitz and R. Maclin, "Popular Ensemble Methods: An Empirical Study," J. Artif. Intell. Res., vol. 11, 1999, doi: 10.1613/jair.614.
- [8] L. Breiman, "Stacked regressions," Mach. Learn., vol. 24, no. 1, 1996, doi: 10.1007/bf00117832.
- [9] K. An and J. Meng, "Voting-averaged combination method for regressor ensemble," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6215 LNCS, doi: 10.1007/978-3-642-14922-1_67.
- [10] T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system," in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-August-2016, doi: 10.1145/2939672.2939785.
- [11] R., S., O., KESKİN, "Predicting shear strength of reinforced concrete slender beams without shear reinforcement using artificial neural networks ", Pamukkale Univ Muh Bilim Derg, 23(3), 193-202, 2017, doi: 10.5505/pajes.2016.42243.