

Damage Detection using Structural Health Monitoring

Science Behind Safety of structure

Dr. Shilpa Pal Associate Professor Delhi Technological University Delhi, India shilpapal@dtu.ac.in

ANALOGY

• Human Health Monitoring

Sick Person

Doctor

🖍 🕂 🥉 89

Test Parameters

Treatment

• Structural Health Monitoring

- Introduction
- SHM techniques
- Smart materials
- Piezoelectric materials
- EMI techniques
- Experimental test frame and results
- Conclusions

What SHM

Estimating the state of structural health and detecting the changes in structure that has affected the performance of structure is defined as SHM

Condition Monitoring

- Asses the present condition
- One-time; subset of long-term SHM
- Particular purpose e.g. strength, integrity, load carrying capacity

Structural Monitoring

- Monitor Condition Continuously
- Maintain the functional utility of the structure

Structural Control

• Controlling Dynamic response of structure

INTRODUCTION

Why SHM ?

Seongsu Bridge, South Korea 1994

Why SHM ?

De la Concorde overpass collapse, Canada, 30 Sep 2006

Why SHM ?

I-35W Bridge, U.S.A, 2007

INTRODUCTION

Why SHM ?

Morbi Bridge, Gujrat, India, 30 OCT 2022 (150 people died)

INTRODUCTION

Why SHM ?

Structural safety

Risk reduction in excavation

Avoiding leakage

Replacement of visual inspection

Retrofitting Evaluation

Design validation

- EMI technique is the interface between local and global
- Principle = similar to the global variation techniques but in a high-frequency range of 50kHz 500kHz
- Sensitivity = As high as ultrasonic techniques

Smart materials for SHM

- **1. Piezoelectric materials**
- 2. Shape memory alloy
- 3. Electrorheological fluid
- 4. Optical fibre
- 5. Magneto-strictive materials

Piezoelectric materials

SMART MATERIALS

Working principle of Smart materials for SHM

PIEZO ELECTRIC MATERIALS AND ITS EFFECT

PIEZO ELECTRIC MATERIALS

PIEZO ELECTRIC EFFECT

ELECTROMECHANICAL IMPEDANCE TECHNIQUE (*EMI TECHNIQUE*)

ELECTROMECHANICAL IMPEDANCE TECHNIQUE (*EMI TECHNIQUE*)

Mechanical impedance is a unique function of structural stiffness, damping and mass

Energy Harvesting

Strength Monitoring

Source: Bansal .T et.al

APPLICATION OF PIEZO SENSORS IN THE VARIOUS FIELD

Damage identification

Creep and fatigue monitoring

Source: Kim et.al 2019

Source: Bhalla et.al 2012

Corrosion Assessment

DETAILS OF TEST FRAME

DAMAGE ASSESSMENT IN CONCRETE UNDER IMPACT LOADING AT VARYING TEMPERATURES

S.No.	Parameter	Description
1	Type of sensors configuration	Embedded, surface bonded and non bonded
2	Impact height	3 and 3.5 m
3	Impactor size and type	Steel ball with 13 cm diameter
4	Temperature variation	50°C, 100°C and 150°C
5	Boundary condition	Free and Fixed
6	Instruments	LCR meter, oscilloscope, guided pipe
7	Grade of concrete	M30

DETAILS OF TEST FRAME

FABRICATION OF PIEZO SENSORS

PLACING OF PIEZO SENSORS ON CONCRETE

With the increase in impact the width of the cracks becomes wider

Cracksweredevelopedatthecentrefirstandthenpropagatedtowardsthetheedgetowards

5th Impact

6th Impact

Baseline (healthy state)conductance and susceptance signature for different sensors configuration

For change in structure

For change in PZT

JKTPS -----> Jacketed piezo sensors (Embedded)

Variation of the Conductance signature with the frequency for increasing impact in comparison to the baseline signature at ambient temperature

With the increase in number of impacts, the conductance signature shifts in the downward directions

SBPS ——> Surface bonded piezo sensors

Variation of the Conductance signature with the frequency for increasing impact in comparison to the baseline signature at ambient temperature

With the increase in number of impacts, the conductance signature shifts in the upward directions

NBPS — Non bonded piezo sensors

Variation of the Conductance signature with the frequency for increasing impact in comparison to the baseline signature at ambient temperature

With the increase in number of impacts, the conductance signature shifts in the downward directions

Heated at 50 °C, 100 °C and 150 °C

JKTPS

SBPS

NBPS

COMBINED EFFECT OF IMPACT AND TEMPERATURE

Authors – Dr. Shilpa Pal & Indrajeet Singh

31

Pre-heated at 50°C, 100°C and 150°C and then subjected to impact loading

As compared to the baseline, conductance signature shifts in the upward direction for the 1st impact and then shift in the downward direction for the further impact load. Shifting of the signature in the upward direction from the baseline to the 1st impact is due to the temperature sensitivity behaviour of sensors

NUMERICAL INDICES FOR SENSORS

conformation to its final position.

Root mean square deviation (RMSD) is used for The mean absolute percentage error (MAPE), also known measuring the difference between the signatures of as mean absolute percentage deviation (MAPD), is a piezo sensors from its initial (baseline) structural measure of prediction accuracy of a forecasting method in statistics

$$RMSD = \left(\frac{\sum_{k=1}^{N} \left[Re(Z_k)_j - Re(Z_k)_i\right]^2}{\sum_{k=1}^{N} \left[Re(Z_k)_i\right]^2}\right)^{\frac{1}{2}}$$

$$MAPD = \frac{1}{N} \sum_{k=1}^{N} \left| \left[Re(Z_k)_j - Re(Z_k)_i \right] / Re(Z_k)_i \right|$$

RMSD VARIATION FOR JKTPS AND SBPS

MAPD VARIATION FOR JKTPS AND SBPS

ANALYSIS BASED ON THE MECHANICAL IMPEDANCE PARAMETER

Authors – Dr. Shilpa Pal & Indrajeet Singh

36

Equivalent stiffness variation for different sensors configuration under 3 m height of impact at 150 °C

Number of Impact	Healthy State	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	10 th	% Variation
Equivalent stiffness for JKTPS (10^4 N/m)	4.50	4.16	4.146	4.127	4.115	4.072	4.069	4.061	4.059	4.041	4.031	10.42 % Loss of Stiffness
Equivalent stiffness for SBPS (10^4 N/m)	4.51	4.34	4.32	4.29	4.28	4.24	4.23	4.21	4.20	4.18	4.17	7.53 % Loss of Stiffness
Equivalent stiffness for NBPS (10^4 N/m)	4.51	4.41	4.37	4.32	4.31	4.27	4.25	4.20				6.87 % Loss of Stiffness

Remaining life estimation using equivalent structural parameters

- Δs Changes in the stiffness caused by incremental damage
- Δk Change in equivalent stiffness compared to k
- k Original equivalent stiffness in pristine stage

$$L = 1 - \frac{N}{N_0}$$

 $\Delta S = \left| \frac{\Delta k}{k} \right|$

- L A non-dimensional parameter (represents the remaining life of structure)
- N_0 Signifies the total number of impacts applied till failure
- N Denotes the number of impacts applied until a specific stage

REMAINING LIFE ESTIMATION

Remaining life estimation using equivalent structural parameters

Variation of *L* vs ΔS for different sensors configurations

Increase in the value of Δs , remaining life of structure reduces

- On the basis of statistical tools such as RMSD and MAPD value, both are the reliable tools for calculating the incipient and progressive damage in concrete under the effect of impact loading at varying temperature.
- Due to its lack of direct contact with the host structure, the NBPS recorded lower RMSD and MAPD (1.396% to 3.22%) values than the SBPS (78.01–67.77%) and JKTPS (12.38–7.86%)
- Both the RMSD and MAPD indices followed a distinct pattern at higher temperatures of 150 °C for all sensor configurations that clearly indicate the damage at higher temperatures.
- The extracted equivalent stiffness with increasing impact number clearly indicates damage propagation in concrete sample for different sensor configuration (10.42 % loss for JKTPS) and also showed satisfactory agreement between the experimental and equivalent plot of x and y.
- Equivalent stiffness can be used to successfully develop an empirical model for predicting the remaining life of structures.

DAMAGE ASSESSMENT IN REINFORCED CONCRETE BEAM UNDER IMPACT LOADING AT VARYING TEMPERATURES

DETAILS OF TEST FRAME

DAMAGE ASSESSMENT IN REINFORCED CONCRETE BEAM UNDER IMPACT LOADING AT VARYING TEMPERATURES

S.No.	Parameter	Description
1	Type of sensors configuration	Embedded
2	Impact height	3 m
3	Impactor size and type	Steel ball with 13 cm diameter
4	Temperature variation	50°C, 100°C and 150°C
5	Boundary condition	Free (Fixed at base)
6	Instruments	LCR meter, oscilloscope, guided pipe
7	Grade of concrete	M30

DETAILS OF TEST FRAME

Block Diagram of the test frame

1st impact

5th impact

10th impact

15th impact

CONDUCTANCE SIGNATURES OF JKTPS SENSORS FOR BEAM

At ambient temperature

With the increase in number of impacts, the conductance signature shifts in the downward directions that clearly indicate the damage in the concrete.

DT

DELTECH

CONDUCTANCE SIGNATURES OF JKTPS SENSORS FOR BEAM

- As compared to the baseline, conductance signature shifts in the upward direction for the 1st impact and then shift in the downward direction for the further impact load.
- Shifting of the signature in the upward direction from the baseline to the 1st impact is due to the temperature sensitivity behaviour of sensors.

 D^{\prime}

cube at 150 °C for JKTPS

beam at 150 °C for JKTPS

- The results clearly demonstrate that JKTPS Piezo clearly detect damage in the beam for very initial stages.
- The PZT patches could be extremely beneficial not only for detecting beginning damage but also for predicting material breakdown.
- The conductance signature followed a distinct pattern for ambient and higher temperature condition that clearly indicate the damage condition of the structural element
- The extracted equivalent stiffness with increasing impact number followed a distinct decreasing pattern (stiffness loss up to 15%) that clearly indicates damage propagation in concrete beam.

- The EMI technique is capable in detecting the damage in the concrete structural element under the combined effect of impact and temperatures.
- JKTPS sensors are the best suitable sensors among all the different sensors configuration for detecting the damage in the concrete under the combined effect of impact and temperatures.
- Therefore, it has significant potential in the field of Non-destructive SHM.

22.113763

Thank You

Authors – Dr. Shilpa Pal & Indrajeet Singh

51