

Neuro-fuzzy network Prediction effective strain of FRP strips - strengthened RC beams

Eng. Thara'a Mubarak¹

Dr. Issam Nasser² Dr. Bassam Hwaija ³

 ¹ Postgraduate Student, Department of Structural Engineering, Faculty of Civil Engineering, Tishreen University. tharaamub@yahoo.com
^{2,3} Professor, Department of Structural Engineering, Faculty of Civil Engineering, Tishreen University. Syria

Introduction

Near Surface Mounted (NSM) strengthening technique, based on the concept of embedding glass or carbon FRP bars or strips into grooves made on the concrete cover of the elements to be strengthened

Why did we do this research?

Experimental and analytical research on Near-surface mounted FRP has proven the importance and efficiency of this technique in strengthening RC beams but determining the <u>effective strain for FRP strips</u> is the main problem in this technique.

Aim of research

The present research has aimed to develop an accurate, yet rapid prediction model ANFIS for determining:

effective strain for NSM-FRP strips that strengthen RC beams

Failure modes for RC beams strengthened with NSM.FRP strips

Adaptive neuro-fuzzy Inference System (ANFIS)

ANFIS is an intelligent system that integrates the learning power of artificial neural network technology and the knowledge of fuzzy logic. MATLAB toolbox was used to simulate the model.

ANFIS used a Sugeno-type fuzzy system in a five-layer network (the input layer not counted by Jang) for two inputs x and y, and one output z, as illustrated in Figure

ANFIS Structure with 2 inputs [1].

Adaptive neuro-fuzzy Inference System (ANFIS)

Database:

The experimental data of 85 RC beams strengthened with the FRP strips by NSM technique that collected from published literature

Inputs

- strength of concrete (fc)

- length of the strengthened strip to the length of the beam (L_b/L)

- equivalent reinforcement ratio ($\rho_{l,eq}$)

<u>Note</u>: the equivalent reinforcement ratio was suggested by Barros [3] $\rho_{l, eq} = A_{sl} / (b.d_s) + (A_f.E_f / E_s) / (b.d_f)$ **ANFIS models**

Outputeffective strain of FRPstrips ($\epsilon_{fd} / \epsilon_{fu}$)

Database:

CERGY PARIS UNIVERSITÉ 15. September. 2023 HAROS Health and Retrofitting of Structure

Conference

Table 1. Experimental data (database)			output			
Reference	Beam notation	f'c (MPa)	$\rho_{\underline{l}_{eq}}$	l_b/L	$\epsilon_{fd}/\epsilon_{fu}$	
	VL1	31.1	0.5286	Jb/L Erd 6 0.7647 0.4 9 0.8095 0.5 5 0.8333 0.4 5 0.9000 0.9 7 0.9000 0.7 6 0.9500 0.5 6 0.9500 0.5 6 0.9500 0.5 6 0.9500 0.5 6 0.9500 0.8 4 0.9500 0.8 9 0.9500 0.8 9 0.9500 0.8 9 0.9500 0.8 9 0.9500 0.8 9 0.9500 0.8 9 0.9650 0.9 9 0.9650 0.8 8 0.9650 0.8 8 0.9650 0.6 1 0.9330 0.7 7 0.9330 0.7 7 0.9330 0.7 7 0.9330 0.7	0.4792	
Barros 2010 [69]	VL2	31.1	0.4889	0.8095	0.5124	
	VL3	atabase)input $ptation$ fc (MPa) ρ_{lag} 31.10.528031.10.488931.10.448931.10.455544.20.277744.20.48744.20.73137.21.92637.21.92637.21.32137.20.94437.20.94437.20.99135.20.63435.20.63435.20.63435.20.63435.20.63435.20.63435.20.63435.20.63441.51.36537.70.79041.50.77845.30.45448.90.68242.80.90146.41.29260.70.965481.054 <t< td=""><td>0.4555</td><td>0.8333</td><td>0.4612</td></t<>	0.4555	0.8333	0.4612	
	S1	44.2	0.2775	0.9000	0.9412	
Barros 2007 [38]	S2	44.2	0.4877	0.9000	0.7941	
	ntal data (database)inputBeam notationfc (MPa) ρ_{Les} l_b/L VL131.10.52860.7647VL231.10.48890.8095VL331.10.45550.8333S144.20.27750.9000S244.20.48770.90006-1F37.21.92650.95006-2F37.22.02160.95009-2F37.21.32100.950012-1F37.20.94440.950012-2F37.20.63490.1563B120035.20.63490.5625B290035.20.63490.9063p141.51.36570.9650p237.70.79090.9650p341.50.77880.9650V1R145.30.45410.9330V2R248.90.68260.9330V3R242.80.90210.9330V4R346.41.29570.9330E460.70.96381.0000E560.70.96381.0000E560.70.96381.0000E5481.05440.20B3481.05440.20B4481.05440.60B5481.05440.60B6481.05440.68B6481.05440.68B7481.05440.84B7481.05440.68B7 <td>0.6971</td>	0.6971				
	6-1F	37.2	1.9265	0.9500	0.5734	
	6-2F	37.2	2.0216	0.9500	0.4934	
Yost 2007 [39]	9-2F	37.2	1.3210	0.9500	0.8210	
	12-1F	37.2	0.9444	0.9500	0.9596	
	12-2F	37.2	0.9919	0.9500	0.8399	
	B500	35.2	0.6349	0.1563	0.1676	
Tong 2006 [26]	B1200	35.2	0.6349	0.3750	0.2679	
Teng 2006 [26]	B1800	35.2	0.6349	0.5625	0.5339	
	B2900	35.2	0.6349	0.9063	0.7103	
	p1	41.5	1.3657	0.9650	0.9200	
Kotynia 2006 [70]	p2	37.7	0.7909	0.9650	0.8100	
	p3	41.5	0.7788	I₀/L 0.7647 0.8095 0.8333 0.9000 0.9000 0.9000 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9650 0.9650 0.9650 0.9650 0.9650 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.9330 0.12 0.20 0.40 0.60 0.68 0.76 0.84 0.96	0.6600	
	V1R1	45.3	0.4541	0.9330	0.9118	
Barros 2005 [12]	V2R2	48.9	0.6826	0.9330	0.7529	
Dar103 2003 [12]	V3R2	42.8	0.9021	0.9330	0.7529	
	V4R3	46.4	1.2957	0.9330	0.6235	
Täljsten 2003 [71]	E4	60.7	input out ρ _{leg} l _b /L ε _f 0.5286 0.7647 0.4 0.4889 0.8095 0.5 0.4555 0.8333 0.4 0.2775 0.9000 0.9 0.4877 0.9000 0.7 0.7316 0.9000 0.6 1.9265 0.9500 0.5 2.0216 0.9500 0.5 2.0216 0.9500 0.8 0.9444 0.9500 0.8 0.9919 0.9500 0.8 0.6349 0.1563 0.1 0.6349 0.5625 0.5 0.6349 0.9063 0.7 1.3657 0.9650 0.8 0.7788 0.9650 0.8 0.7788 0.9650 0.6 0.4541 0.9330 0.7 1.2957 0.9330 0.7 0.9021 0.9330 0.7 0.9638 1.0000 0.6 0.9638 <t< td=""><td>0.6389</td></t<>	0.6389		
	E5	60.7	0.9638	0.8333	0.6222	
	B1	48	1.0544	0.12	0.0968	
	B2	48	1.0544	0.20	0.1278	
-	B3	48	1.0544	0.40	0.5338	
Hassan and Rizkalla	B4	48	1.0544 0.60		0.8872	
2003 [36]	B5	48	1.0544	0.68	0.9549	
	B6	48	1.0544	0.76	0.9624	
	B7	48	1.0544	0.84	0.9699	
	B8	48	1 0544	0.96	0.9850	

7

Analysis of the ANFIS model:

Initially, the ANFIS network was trained with the 80% experimental data collected within the database shown in table1

To fuzzify the ANFIS inputs three bell-shaped membership functions to model the second input and two relationships to model the first and third inputs.

To determine the effective strain of FRP strips the ANFIS networks were tested after the training process

The final structure of ANFIS is illustrated in adjacent figure.

Structure of the proposed (ANFIS) to predict effective strain

The predicted values of the ANFIS model are shown in following figure as a scatter plot.

most points are located near the diagonal line of the ANFIS prediction model.

the values of the prediction results are in good agreement with the experimental values

Scatter plots of predicted values by ANFIS

To ensure that the proposed ANFIS method was valid as a confirmed method, the expected results were compared to the expected results using fuzzy logic and ANN neural network method

Scatter plots of predicted values by FIS

11

Table 2 summarizes the accuracy results of prediction by ANFIS, ANN, and fuzzy, for the experimental database.

ANFIS	model	ANN	model	FIS	model
R ²	RMSE	R ²	RMSE	R ²	RMSE
0.971	0.04757	0.905	0.8526	0.786	0.08566

Table 2. Performance statistics of the ANFIS, FIS, ANN models

From Table 2, the results of the proposed ANFIS method are more accurate than the traditional methods and this is due to the higher adaptation of the ANFIS network to find the ideal values for relationships on the one hand and the type of relationship on the other hand, the bell-shaped membership has been used in the ANFIS method.

The confirmation of the high accuracy of ANFIS was also verified by comparing its expected results with the results of the formula proposed by Barros [3] and modified by Khalifa [4] using RSME, and R² as stated in its references.

Table 3 summarizes the accuracy results for these equations.

Barros's formula [2]
$$\frac{\varepsilon_{fe}}{\varepsilon_{fu}} = -32.648\rho_{l,eq} + 0.9606$$

Khalifa's formula [4] $\frac{\mathcal{E}_{fe}}{\mathcal{E}_{fu}} = -27.37\rho_{l,eq} + 0.9174$ Table 3. Performance statistics of the
Barros, Khalifa's formula

Barros	s formula	Khalifa's	formula
[3] R ²	RMSE	[4] R ²	RMSE
0.5106	0.155	0.5286	0.133

The confirmation of the high accuracy of ANFIS was also verified by comparing its expected results with the results of a formula proposed by us, which

took the effort of three years of continuous work

$$\left| \begin{array}{c} \varepsilon_{fe} = 12 \left(\frac{f_c}{nE_f A_f} \right)^{0.35} \times (-183\rho_s^2 + 2.84\rho_s + 0.051) < 0.9\varepsilon_{fu} \\ \rho_s \ge \rho_{smin} \end{array} \right| \left| \begin{array}{c} \varepsilon_{fe} = \sqrt{\frac{f_c}{\sqrt{n}}} \times \frac{53}{\left(E_f A_f \right)^{0.7}} < 0.9\varepsilon_{fu} \\ \rho_s < \rho_{smin} \end{array} \right|$$
(I)

Mubarak. Nasser, Hwaija

Failure modes prediction for strengthened RC beams

CanwepredictthefailuremodesofRCbeamsstrengthenedwithFRPstripsusing

YES, We can.

Failure modes prediction for strengthened RC beams

Structure of the proposed (ANFIS) to predict failure mode

Failure modes prediction for strengthened RC beams

Inputs			Failure Mode Output			Inputs			Failure Mode Outpu		
Beam notation $\mathbf{f} \mathbf{c} (\mathbf{MPa}) = \rho_{1, eq} % \mathbf{l}_{b} / \mathbf{I}$	l _b /L	Experimental Failure Mode	ANFIS Failure Mode	Beam notation	f'c (MPa)	β l, eq%	l _b /L	Experimental Failure Mode	ANFIS Failure Mode		
AD1sh	33	0.9481	0.857	DF	DF	NIT A /40/100	41.75	0.5252	0.25	DE	
AS2sh	33	2.0585	0.857	DF	DF	NILA/40/100	41.75	0.5253	0.35		
BS3sh	42.77	0.8599	0.857	DF	DF	NILA/40/120	41.75	0.5255	0.30		
BT3sh	42.77	1.0379	0.857	DF	DF	NILA 30/2.80	41.75	1 9/12	0.34		
S-212-25-2NSM	33.1	0.6723	0.915	CC	CC	NIL B/40/90	37.67	1.0413	0.345		
R-PL-15	31.3	0.4415	0.9	RF	CC	NILB/40/120	43.7	1.8413	0.36		
R-PL-25	31.3	0.4624	0.9	DF	СС	NIL B/40/120p	43.7	1 8/13	0.365		
R-PL-25-2-S	31.3	0 5132	0.9	DF	DF	NILL D/40/130pp	24.22	0.8065	0.305		
B-N-2-2	35	0.8038	0.955	C-F	C-F	NIILB/40/80p	24.32	0.8005	0.54		
NSM c 2*1 4*10 1	21	1 081	0.905	DE	DF	NILB/40/2*80	34.52	0.8561	0.34	DF	
NSM_c_3*1_4*10_1	21	1 1462	0.905	DE	DE	NIILB/40/120	38.8	0.8065	0.36		
M2S1	30.5	0.6326	0.653	5.E	с. с.	51	44.2	0.2775	0.9	DF	DF
F2S1	30.5	0.6326	0.833				44.2	0.4877	0.9	DF	DF
R2	25	0.0520	1	ាងស្ត្	n ro)ercentare	44.2	0.7316	0.9	DF	DF
B2 B3	25	0.2242	1	DE		electicage	37.2	1.9265	0.95	сс	CC
B3 B4	25	0.3264	1	DE			37.2	2.0216	0.95	сс	CC
1 0 0 1	21.4	0.505	0.022	S E		-410 F	37.2	1.321	0.95	сс	CC
LD2SI	21.4	0.0510	0.833	3-E	3-E	1F	37.2	0.9444	0.95	RF	CC
LB252	51.4	0.0320	0.833	5-E	3-E	12-2F	37.2	0.9919	0.95	CC	RF
NSM2-32	30	0.480	0.32	DF	DF	B500	35.2	0.6349	0.156	DF	DF
NSMZ-48	30	0.480	0.48			B1200	35.2	0.6349	0.375	DF	DF
NSMI-70	30	0.315	0.7			B1800	35.2	0.6349	0.563	DF	DF
NSM2-70	30	0.486	0.7			B2900	35.2	0.6349	0.906	сс	CC
NSM2-80	30	0.486	0.8	60		p1	41.5	1.3657	0.965	CC	CC
NSM2-96	30	0.486	0.96	CC	CC	p2	37.7	0.7909	0.965	DF	DF
NISA/20/85	22.3	0.5263	0.507	DF	DF	p3	41.5	0.7788	0.965	DF	DF
NISA/20/130	23.5	0.5263	0.541	DF		V2R2	48.9	0.6826	0.933	DF	DF
NISA/20/170	23.5	0.5203	0.57			V3R2	42.8	0.9021	0.933	DF	DF
NISA/20/85P	21.5	0.5263	0.507			V4R3	46.4	1.2957	0.933	DF	DF
NISA/20/150P	21.5	0.5263	0.555	DE		E4	60.7	0.9638	1	DF	DF
NISA/20/100P	32.5	0.5203	0.503		DF	B1	48	1.0544	0.12	C-E	C-E
NISA/30/120	32.5	0.5263	0.533	DF	DF	B2	48	1 0544	0.2	C-F	RF
NISB/20/85	19.85	1.8413	0.507	DF	DF	B3	48	1 0544	0.4	DE	DE
NISB/20/130	19.85	1.8413	0.541	DF	DF	B4	48	1.0544	0.6	DE	
NIISB/40/80	41.58	0.7392	0.504	DF	DF	BS	40	1.0544	0.0		
NIISB/40/2*80	41.19	0.7941	0.504	DF	DF	D6	40	1.0544	0.00		
NIISB/40/120	41.19	0.7392	0.533	DF	DF	B0 B7	40	1.0544	0.70		
NIISB/40/160	41.19	0.7392	0.563	DF	DF	B/	40	1.0544	0.84	KF	KF DE
		1	1	1		L B8	48	1.0544	0.96	I KF	I RF

18

Conclusions

- The study revealed that the predicted effective strain of FRP strips closely conforms to the experimental results, which confirms the efficiency of the ANFIS model. The ANFIS system showed superior predictive accuracy and high generalizability compared to the fuzzy logic and neural networking method (ANN), The level of accuracy with ANFIS was achieved at RMSE = 0.0475. The main benefits of the ANFIS model are an effective, highly adaptable calculation with optimization and adaptation techniques.
- A comparison of the collecting experimental data with Barros's formula and Khalifa's formula Where the highest accuracy of these equations reached RMSE=0.1333.
- **3** Thus, statistical indicators gave ANFIS a preference in predicting effective strain for FRP strips of RC beams flexurally-strengthened with NSM FRP strips.

Conclusions

The main conclusions

It is possible to use the proposed ANFIS model to predict the value of the effective strain for FRP strips of RC beams flexurally-strengthened with NSM FRP strips and the failure modes of these beams, which saves us the high cost of experimental testing as well as timesaving which is valuable in the end.

References

- Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern. 23 (3) (1993) 665–685.
- Barros, Fortes. Flexural strengthening of concrete beams with CFRP laminates bonded into slits. Cement & Concrete Composite 2005, 27(4), 471–480.
- Barros, Dias, Lima. Efficacy of CFRP-based techniques for the flexural and shear strengthening of concrete beams, Cement & Concrete Composite 2007, 29(3), 203-217.
- Khalifa, Flexural Performance of R.C Beams Strengthened with Near Surface Mounted CFRP Strips, Alexandria Engineering Journal, 2016
- Teng, Delorenzis, Wang, Wong, Lam. Debonding failures of RC beams strengthened with near surface mounted CFRP strips. Journal of composites for construction, 10 (2) (2006), 92-105.
- Kotynia, (2012) Bond between FRP and concrete in reinforced concrete beams strengthened with near surface mounted and externally bounded reinforcement. Construction and building materials, 32, 41-54
- Moawad, Flexural Behavior of NSM FRP Strengthened Reinforced Concrete Beams under Sustained Loading, PhD thesis, The University of Girona, 2020.
- Barris, Sala, Gómez, Torres, Flexural behavior of FRP reinforced concrete beams strengthened with NSM CFRP strips, Composite Structures 241 (2020).
- Jung, Park, Kang, and Keum, Flexural Behavior of Concrete Beam Strengthened by Near-Surface Mounted CFRP Reinforcement Using Equivalent Section Model, Advances in Materials Science and Engineering Volume 2017, Article ID 9180624
- Bilotta, Ceroni, Nigro, Pecce, Efficiency of CFRP NSM strips and EBR plates for flexural strengthening of RC beams and loading pattern influence, Composite Structures 124 (2015)

REFERENCES

Sharaky, Torres, Sallam, Experimental and analytical investigation into the flexural performance of RC beams with partially and fully bonded NSM FRP bars/strips, Composite Structures 122 (2015) 113–126.

Ibrahim, Fattah, Kotb, Mjeed, Flexural Behavior of RC Beams Strengthened with CFRP Strips, The 7th International Conference on FRP Composites in Civil Engineering International Institute for FRP in Construction (CICE 2014), Canada.

Sharaky, A Study of the Bond and Flexural Behavior of Reinforced Concrete Elements Strengthened with Near Surface Mounted (NSM) FRP Reinforcement, PhD thesis, The University of Girona, 2013.

Young, Seup, Assessment of Flexural Strengthening Behavior Using the Stirrup-Cutting Near Surface Mounted(CNSM) CFRP strip, Journal of the Korea Institute for Structural Maintenance and Inspection Vol. 16, No. 6 (2012)102-112.

[15] Barros, Costa, Flexural and Shear Strengthening of RC Beams with Composites Material – The Influence of Cutting Steel Stirrups to Install CFRP Strips, Cement and concrete composites,

Yost, Gross, Dinehart, Mildenberg, Flexural Behavior of Concrete Beams Strengthened with Near-Surface-Mounted CFRP Strips. ACI-Structural Journal, 104 (S41) (2007), 430-437.

Kotynia, Flexural behavior of Reinforced Concrete Beams Strengthened with near Surface Mounted CFRP Strips, Third International Conference on FRP Composites in Civil Engineering (CICE 2006), Miami, Florida, USA

Täljsten, Carolin, Nordin, Concrete Structures Strengthened with Near Surface Mounted Reinforcement of CFRP, Sweden (2003).

