University of Baghdad College of Engineering Department of Civil Engineering

Performance of Encased GFRP Pultruded I-Section Beams under Fire Exposure

Prof. Dr. Abbas A. Allawi

Sept., 2023

Introduction:

Glass Fibre Reinforced Polymer (GFRP) : is a composite material made of a polymer resin matrix reinforced by embedded glass fibres. GFRP is manufactured by pultrusion technology..

Introduction: Advantages and disadvantages of GFRP:

GFRPs are commonly used due to their advantages, such as

- High strength-to-weight ratio.
- Superior corrosion and chemical resistance,
- Low thermal conductivity,
- Electric insulation.
- Dimensional stability.
- A long life cycle.
- Low-maintenance.

Disadvantages:

- Relatively low stiffness.
- Brittle behaviour.
- High initial costs of these advanced materials.
- Design constraints due to instability or large deformations.
- \succ The lack of codes.

Introduction: Types of composite section:

- The pultruded GFRP profiles are appropriate for the GFRP structures. \bullet Additionally, it is employed with various materials to create composite members.
- Most of the composite beams designed have been built by combining (GFRP) profiles with concrete because of their low cost and high structural efficiency. Concrete is also preferred because it can provide confinement, increase flexural stability, strength, and stiffness.

beam- RC deck

Introduction: Behavior of FRP exposure to fire

• Like other building materials, FRP loses stiffness and strength as the temperature rises. However, the FRP properties degrade more quickly when comparison to steel or concrete since the FRP matrix properties begin to degrade even at low temperatures.

Objectives of the study

- 1. Study experimentally the performance of encased pultruded GFRP I-section beam with high-strength concrete under static and fire loading.
- 2. Comparative studies between the behavior of encased GFRP I-section beams and conventional reinforced concrete beams, and comparison between the response of encased beams at ambient and elevated temperature.
- 3. Evaluating the post-fire residual strength of the deteriorated encased beams at ultimate.
- 4. Enhancing the ductility and assessing the absorption energy capacity of encased beams by carrying out the experimental test.
- 5. To investigate some significant parameters in such as the effect of adding shear connector, web stiffeners, compressive concrete strength, and tensile strength of pultruded GFRP I-section beam.
- 6. Proposing Finite element models to simulate the performance of encased pultruded GFRP beam under static and fire loading. Static and thermal finite element analyses are developed using the ABAQUS program.

Mechanical Properties of Concrete at Ambient and Elevated Temperature

Test	Test		Test	Test	
Temperature	Compressive Strength f _c ' (Mpa)	Splitting Tensile Strength f _{ct} (MPa)	Modulus of Rupture f _r (MPa)	Modulus of Elasticity E _c (MPa)	
Ambient	53.8	4.43	4.8	30631	
700 °C	17.4	0.41	1.1	13917	

Mechanical Properties of Steel at Ambient and Elevated Temperature

Steel specimens of tension test

Steel tensile test

Steel bar diameters (mm)	Temperature (°C)	Yield tensile stress f _y (MPa)	Residual yield tensile stress f _y (%)	Ultimate tensile strength f _u (MPa)	Residual ultimate ensile strength f _u (%)
Ø10	ambient	408	100	466	100
	700	339	83.1	361	77.5
Ø16	ambient	520	100	687	100
	700	434	87.1	551	80.2

Compressive Properties of GFRP According to ASTM D 695–15

Tensile Properties of GFRP According to ISO 527-5 1997

Push out test of GFRP

 $\tau =$

Properties of Pultruded GFRP I-Section Beam

Mechanical properties data	
Transverse Compressive Strength (MPa)	118.3
Longitudinal Compressive Strength (MPa)	326.14
Longitudinal Tensile Strength (MPa)	347.5
Longitudinal Modules of Elasticity (MPa)	27100
Transverse Modules of Elasticity (MPa)	6800
Longitudinal Compressive Strain (%)	0.225
Transverse Compressive Strain (%)	0.93
Longitudinal Tensile Strain (%)	2.735
Longitudinal Compressive Confined Strength (MPa)	354.17
Longitudinal Confined Modules of Elasticity (MPa)	26.64
Longitudinal Compressive Confined Strain (%)	0.322
Geometrical properties data*	
Area (mm ²)	3300
Perimeter (mm)	680
Moment of inertia (mm ⁴)	11647500
Mass (Kg/m)	5.94
Web and Flange thickness (mm)	10
Physical properties data*	
Relative density	1.6-2.1
Water absorption (%)	0.5
Specific Heat (KJ)	1.5
Thermal Conductivity (W/mk)	0.37
Coefficient of thermal expansion (1/k)	1.3 E-5

Preparing of specimens

Static test results

Static test results

Specimens	Initial crack Ioad (KN)	Yield load (KN)	Ultimate Ioad (KN)	Change (%)	Central disp. (mm)	Change (%)
Ref-A	19.93	90.22	100.46	-	32.80	-
EG-A	20.24	151.81	159.04	+58.3	33.07	+0.8
EGS-A	19.73	148.26	201.54	+100.6	48.68	+48.4
EGW-A	20.12	175.20	198.24	+97.3	38.96	+18.8
EGSW-A	22.26	224.43	231.88	+130.8	52.56	+60.2

Static test results

Fire test

Fire damage beam test

25 KN

40 KN

50 KN

10

13

9

8

5

5

Thermal test

EGW-F

EGSW-F

5.55

8.13

21

16

2.38

4.06

32

27

3

2

Strength and Residual Response

Specimens	Yielding load (KN)	Peak Ioad (KN)	Ultimate deflection (mm)	Strain in concrete (mm/mm)	Change in strain (%)	Change in yielding Ioad (%)	Change in peak load (%)	
Ref-F	59.8	80.6	56.7	0.0029	-	-	-	
EG-F	83.6	122.1	68.6	0.0032	+10	+39.7	+51.5	
EGS-F	92.5	149.6	112.5	0.004	+38	+54.4	+85.6	
EGW-F	93.1	130.1	34.7	0.0033	+14	+55.4	+61.3	
EGSW-F	107.1	166.2	81.1	0.0033	+14	+78.7	+106.2	23

Residual behaviour comparison between unburned and burned beams

	UNDU	Ineu	Dorneu		Chung	Je (70)
Specimen	Peak load (kN)	Displacement @ peak load (mm)	Peak load (kN)	Displacement @ peak load (mm)	Peak Ioad	Disp.
Ref	100.4	32.8	80.6	56.7	-19.7	+72.9
EG	159.1	33.1	122.1	68.6	-23.1	+107.7
EGS	201.5	48.6	149.6	112.5	-25.7	+131.2
EGW	198.2	38.9	130.1	34.7	-34.3	-10.8
EGSW	231.8	52.5	166.2	81.1	-28.3	+54.4

EGSW

Thermal strain and failure mode

failure mode of fire damage beams

Numerical analysis

Element Type:

Instance	Static analysis	Thermal analysis
Concrete	C3D8R	C3D8T
Steel	T3D2	T3TD2
GFRP	S4R	S4T
Shear connector	C3D8R	C3D8T
Web stiffener	S4R	S4T
Steel Plate	C3D8R	C3D8T

Material modelling

Concrete	Concrete damage plasticity
Steel	Elasto-plastic model
GFRP	Hashin's criteria

Numerical analysis

Numerical analysis

Ambient temperature

Mechanical properties

Strength analysis Elevated temperature (700 ° C)

Thermal and mechanical properties

Residual post fire properties

Evaluate residual capacity of fire damage beams

Numerical analysis

Static analysis:

Numerical analysis Thermal analysis:

Numerical analysis Residual Static Results:

Numerical analysis Static Paramatric study:

Compressive strength of concrete

Tensile strength of GFRP

Numerical analysis Residual Static Results:

Compressive strength of concrete

Tensile strength of GFRP

Conclusion

Conclusion of expermental work

- 1. Encasing the GFRP beam with concrete enhanced the peak static load by 58.3%. Using shear connectors, web stiffeners, and both improved the peak loads by 100.6%, 97.3%, and 130.8%, respectively, relative to the classical reinforced concrete.
- 2. The shear connectors and web stiffeners increased the beams' rigidity. In addition, the GFRP beams improved the ductility by 21.6% relative to the reference one. Moreover, the shear connectors, web stiffeners, and both improved the ductility by 185.5%, 119.8%, and 128.4%, respectively, relative to the reference beam.
- 3. The residual post-fire peak load of the encased beam was higher than the conventional reinforced concrete beam by 52%. The presence of shear connection, web stiffener, or both increased the residual peak loads by 86%, 61%, and 106%, respectively, relative to the reference beam.
- 4. The encased GFRP beams could significantly reduce the residual behavior of the firedamaged specimens relative to the unburned reference one.

MDPI	Journals	Topics	Information	Author Services	Initiatives	About	Sign In / Sign Up
Search for Articles: Title / Key	vord	Author / A	Affiliation / Email	Fire	•	All Article Types	• Search Ad
Journals / Fire / Volume 6 / Issue 5 / 10.33	90/fire6050212						
fire	ĸ					l	Order Article Reprints
Submit to this Journal	op Ex Be	en Access Artic periment ams und	tal and Num er Elevated	nerical Behavio I and Ambient T	r of Encas Temperatu	ed Pultrude res	ed GFRP
Propose a Special Issue	by (🔉 Enas M. Ma Ayman El-Zoh	ahmood 1 ⊠, 섍 T aairy ^{2,*} ⊠ 💿	eghreed H. Ibrahim ^{1 E}	🛛 💿, 🤮 Abbas	A. Allawi ¹ ⊠ 💿 a	nd
Article Menu Academic Editor	1 2 * ,	Department of Department of Author to whon	Civil Engineering, Engineering and n correspondence	University of Baghdad, Technology, Texas A&M should be addressed.	Baghdad 1700 ⁻ University-Com	I, Iraq merce, Commerce	, TX 75429, USA
Pinghua Zhu	Fire Rec	2023, 6(5), 21	12; https://doi.org il 2023 / Revised	/10.3390/fire6050212 : 16 May 2023 / Accept	ed: 19 May 202	3 / Published: 21	May 2023
Subscribe SciFeed	(Thi Cor	s article belong iditions)	gs to the Special I	ssue Thermal–Mechan	ical Analysis A	pplied in Material	s under Fire

University of Baghdad College of Engineering

Journal of Engineering

journal homepage: www.jcoeng.edu.iq Volume xx Number xx Month xx

Civil Engineering

A review in Encased Pultruded GFRP Beams with Shear connectors

Enas M. Mahmood Ph.D. Student Department of Civil Engineering University of Baghdad Baghdad-Iraq <u>e.mahmood1901p@coeng.uobaghdad.edu.iq</u> Abbas A. Allawi Professor Department of Civil Engineering University of Baghdad Baghdad-Iraq <u>A.Allawi@uobaghdad.edu.iq</u>

Thanks for Listening