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CONTEXT
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BRIDGES NUCLEAR PLANT CONFINEMENTS COOLING TOWERS

Civil Engineering Concrete Structures

TUNNELS

➢ Engineering needs: calculation of residual lifespan by predictive models

➢ Assessment of inputs or outputs of models: moisture content, mechanical
stress, elastic modulus, mechanical damage index, corrosion, etc…) 

SHM of properties and pathologies of concrete
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OUTLINES

➢ INTRODUCTION

➢ CONCRETE MOISTURE MONITORING

➢ REINFORCEMENT CORROSION MONITORING

➢ CONCRETE STRESS MONITORING BY EM WAVES

➢ CONCRETE MECHANICAL DAMAGE MONITORING WITH SELF-

SENSING CONCRETE

➢ CONCLUSIONS/PERSPECTIVES
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SHM AND MOISTURE

Moisture gradient assessment in concrete --> deep storage of radioactive wastes

➢ Exothermic wastes→ increase of temperature + tunnel ventilation → important 
drying of concrete→ risk of argilite drying which must be absolutely prevented

Monitoring of moisture gradient along concrete thickness
by means of embedded resistivity sensors

Project Cigéo

➢ Reinforced concrete tunnels → in contact with the ground (argilite) 
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SHM AND MOISTURE

Design of embedded resistivity sensors
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SHM AND MOISTURE

Results obtained on mockups (75cmx75cmx30cm)
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➢ Ladder sensor can detect the moisture gradient

➢ On site application planned in 2024 (ANR Scaning)
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Resistivity versus thickness of concrete (Ladder sensor) Sensors inside the mockup
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SHM AND CORROSION

Corrosion of concrete steel reinforcement

➢ Protection of steel by the high pH of concrete→ passivation layer

➢ Due to CO2 or/and chloride ingress through cover concrete→ destruction of passive layer

➢ Initiation and propagation of corrosion
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Very long process → SHM
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SHM AND CORROSION

Simplified configuration for the measurement of corrosion rate
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➢ Laboratory device→ on site application?

➢ Measurement processing→ engineering practice?
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SHM ET CORROSION

On site prototype of the measurement device

➢ Electrode and potentiostat gathered into a specific probe

➢ Measurement processing via meta-models

➢ Driving and acquisition softwares in a portable tablet

→ On site prototype used and validated by SETEC-LERM/EDF

Project FUI DIAMOND
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Probe 
« DIAMOND »
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SHM AND CORROSION

Use of the probe for monitoring applications on cooling towers

➢ CAPTAE® system designed and developed by SETEC-LERM

Images LERM-SETEC© 
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SHM AND STRESS

Concrete Stress Monitoring with electromagnetic (EM) waves

➢ Use of Impulse and Step Frequency GPR with coupled antennas
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Compressive test
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SHM AND STRESS
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➢ Effect of compressive stress on the amplitude of impulse GPR signals

➢ The amplitude of the EM wave decreases with the increase of stress

Concrete Stress Monitoring with electromagnetic (EM) waves
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SHM AND STRESS

➢ The sensitivity of EM to stress is higher when the electric field
is perpandicular to direction of stress

➢ The sensitivity is higher if moisture content is higher
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➢ Effect of antenna polarisation and moisture

Concrete Stress Monitoring with electromagnetic (EM) waves
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SHM AND STRESS
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➢ Towards on site solution

➢ Impulse GPR not adapted to SHM

➢ Use of step frequency GPR with Vivaldi 
antennas with portable VNA

➢ Higher resolution in particular for phase 
characterisation

➢ Lower cost

Compressive test with
Vivaldi antennas

Concrete Stress Monitoring with electromagnetic (EM) waves
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SHM AND DAMAGE

➢ Design of a self-sensing concrete

Self-sensing concrete

Highly conductive additions Concrete

→ Addition of carbon nanotubes
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Concrete Mechanical Damage Monitoring with Self-sensing Concrete
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➢ Measurement of the fractional resistivity change (FCR) with
embedded electrodes under four point bending test
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SHM AND DAMAGE

➢ Measurement principle

Mechanical damage monitoring with Self-sensing concrete
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➢ FCR is able to reproduce the mechanical behaviour of the beam
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SHM AND DAMAGE

➢ Results

Mechanical damage monitoring with Self-sensing concrete
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➢ FCR is well correlated to crack opening (CMOD)
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SHM AND DAMAGE

➢ Results

Mechanical damage monitoring with Self-sensing concrete



19

CONCLUSIONS

PERSPECTIVES

Monitoring of concrete condition is relevant for a relevant diagnosis and 
prognosis of structures

➢ Monitoring of moisture→ embedded resistive sensors are available→ rather low
reliability for low moisture content → capacitive sensors

➢ Monitoring of corrosion → sensors and monitoring systems are currently being
developed→ what durability of electrochemical sensors for long term monitoring?

➢ Monitoring of stress → sensitivity of EM waves is demonstrated→ necessity to discard
the effect of water content variations

➢ Mechanical Damage Assessment with Self-sensing Concrete→ the variation of 
resisitivity is well correlated to crack opening→ problem with the cost of carbon
nanotubes 
→ use of metallic fibers to increase concrete conductivity
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Thank you for your attention

Questions?


