

Electromagnetic and electric methods for monitoring concrete condition

J.P. Balayssac (LMDC Toulouse)

With:

- J. Badr, G. Villain, S. Palma Lopes, Y. Fargier (UGE)
- S. Keo, E. Mahfoud, G. Samson, F. Deby, A. Confais, G. Klysz, S. Shahzad, A. Toumi, A. Turatsinze (LMDC)
- B. Yven (Andra)
- V. Guihard, J. Sanahuja, F. Taillade (EDF)
- B. Quénée, M. Lassoued, J.L. Garciaz (SETEC-LERM)

Civil Engineering Concrete Structures

BRIDGES

NUCLEAR PLANT CONFINEMENTS COOLING TOWERS

TUNNELS

- > Engineering needs: calculation of residual lifespan by predictive models
- Assessment of inputs or outputs of models: moisture content, mechanical stress, elastic modulus, mechanical damage index, corrosion, etc...)

SHM of properties and pathologies of concrete

de Toulouse

> INTRODUCTION

- > CONCRETE MOISTURE MONITORING
- **Reinforcement Corrosion Monitoring**
- **CONCRETE STRESS MONITORING BY EM WAVES**
- CONCRETE MECHANICAL DAMAGE MONITORING WITH SELF-SENSING CONCRETE
- > CONCLUSIONS/PERSPECTIVES

Moisture gradient assessment in concrete --> deep storage of radioactive wastes

- \succ Reinforced concrete tunnels \rightarrow in contact with the ground (argilite)
- ➤ Exothermic wastes → increase of temperature + tunnel ventilation → important drying of concrete → risk of argilite drying which must be absolutely prevented

Monitoring of moisture gradient along concrete thickness by means of embedded resistivity sensors

Université

LMD

Design of embedded resistivity sensors

STITUT

MECD

OT

Printed board

0.35

0.25

0.25

0.25

0.2

0.15

0.1

0.05

0.35

m 0.2

0.15

0.1

0.35

0.3

0.25

0.2

0.15

0.45

0.4

0.35

Results obtained on mockups (75cmx75cmx30cm)

Sensors inside the mockup

Resistivity versus thickness of concrete (Ladder sensor)

- Ladder sensor can detect the moisture gradient
- On site application planned in 2024 (ANR Scaning)

Université de Toulouse

Corrosion of concrete steel reinforcement

- \blacktriangleright Protection of steel by the high pH of concrete \rightarrow passivation layer
- ➢ Due to CO2 or/and chloride ingress through cover concrete → destruction of passive layer
- Initiation and propagation of corrosion

Very long process \rightarrow SHM

Simplified configuration for the measurement of corrosion rate

> Three-electrodes configuration for the measurement of polarisation resistance

➤ Laboratory device → on site application?

> Measurement processing \rightarrow engineering practice?

On site prototype of the measurement device

Electrode and potentiostat gathered into a specific probe

- Measurement processing via meta-models
- Driving and acquisition softwares in a portable tablet

→ On site prototype used and validated by SETEC-LERM/EDF

Use of the probe for monitoring applications on cooling towers

CAPTAE[®] system designed and developed by SETEC-LERM

Images LERM-SETEC©

Concrete Stress Monitoring with electromagnetic (EM) waves

Use of Impulse and Step Frequency GPR with coupled antennas

Compressive test

Concrete Stress Monitoring with electromagnetic (EM) waves

Effect of compressive stress on the amplitude of impulse GPR signals

> The amplitude of the EM wave decreases with the increase of stress

RNO

MECD

Concrete Stress Monitoring with electromagnetic (EM) waves

Effect of antenna polarisation and moisture

- The sensitivity of EM to stress is higher when the electric field is perpandicular to direction of stress
- $\mathbf{I} \succ$ The sensitivity is higher if moisture content is higher

Concrete Stress Monitoring with electromagnetic (EM) waves

Towards on site solution

- Impulse GPR not adapted to SHM
- Use of step frequency GPR with Vivaldi antennas with portable VNA
- Higher resolution in particular for phase characterisation
- Lower cost

Compressive test with Vivaldi antennas

Concrete Mechanical Damage Monitoring with Self-sensing Concrete

Design of a self-sensing concrete

→ Addition of carbon nanotubes

Mechanical damage monitoring with Self-sensing concrete

Measurement principle

Measurement of the fractional resistivity change (FCR) with embedded electrodes under four point bending test

Mechanical damage monitoring with Self-sensing concrete

➢ Results

FCR is able to reproduce the mechanical behaviour of the beam

Mechanical damage monitoring with Self-sensing concrete

Results

FCR is well correlated to crack opening (CMOD)

Monitoring of concrete condition is relevant for a relevant diagnosis and prognosis of structures

- ➤ Monitoring of moisture → embedded resistive sensors are available → rather low reliability for low moisture content → capacitive sensors
- ➤ Monitoring of corrosion → sensors and monitoring systems are currently being developed → what durability of electrochemical sensors for long term monitoring?
- ➤ Monitoring of stress → sensitivity of EM waves is demonstrated → necessity to discard the effect of water content variations
- Mechanical Damage Assessment with Self-sensing Concrete

 the variation of resisitivity is well correlated to crack opening

 problem with the cost of carbon nanotubes
 - ightarrow use of metallic fibers to increase concrete conductivity

Toulouse

Thank you for your attention

Questions?

20

